JOURNAL OF APPROXIMATION THEORY 62, 94-109 (1990)

The Chebyshev Theory of a Variation of L_p (1 < $p < \infty$) Approximation

Ming Fang

Department of Applied Mathematics, Beijing Institute of Aeronautics and Astronautics, Beijing, People's Republic of China

Communicated by Allan Pinkus

Received July 27, 1987; revised February 29, 1989

In this paper, we study a variation of best L_p approximation obtained by using a new "norm." We consider the questions of existence and uniqueness and also prove analogues of the essentials of the classical theory of best uniform approximation: characterization (Theorem 4), de La Vallée Poussin's bound (Theorem 5), and strong uniqueness (Theorem 7). $-1^{(1990)}$ Academic Press, Inc.

1. INTRODUCTION

After Pinkus and Shisha [1] proposed a new method of approximation using L_p -type "norms" (gauges), Y.-G. Shi [2] introduced another method of approximation in the case p = 1. This method maintains many essentials of the classical theory of best uniform approximation and has a distinct advantage over the corresponding one for L_1 best approximation, in that the unique best approximation is characterized by a remarkable geometric property. In this paper, we propose another L_p -type measure $\|\cdot\|^*$ (1 in terms of the technique of [2] in order to study the samequestions of existence, uniqueness and characterization. In the special case<math>p = 1, the measure $\|\cdot\|^*$ is the norm $\|\cdot\|$ defined in [2].

2. Preliminaries

Let C[a, b] be the class of real-valued functions continuous on [a, b]. For $f \in C[a, b]$ and 1 , we define

$$\|f\|^* = \sup\left\{ \left\| \int_c^d f \|f\|^{p-1} dx \right\| : a \leqslant c \leqslant d \leqslant b \right\}.$$
⁽¹⁾

0021-9045/90 \$3.00

Copyright (= 1990 by Academic Press, Inc. All rights of reproduction in any form reserved. Let G be an n-dimensional subspace of C[a, b]. We consider the following problem: For a given $f \in C[a, b]$, find a $u \in G$ such that

$$||f - u||^* = \inf_{v \in G} ||f - v||^*.$$

Such a polynomial u (if any) is said to be a best approximation to f from G.

Now we introduce the basic notations and definitions. Denote $X := \{I = (c, d): I \subset [a, b]\}$. We adopt the convention that X contains the unique "zero" element 0 = (c, c). If $I = (c, d) \in X \setminus \{0\}$, we write I = c and $I^+ = d$. In the following, we always assume that $f \in C[a, b]$. For ease of notation we set $f(I) := \int_I f |f|^{p-1} dx$, $X_f := \{I \in X: |f(I)| = ||f|^*\}$, and $S_t(I) := \operatorname{sgn} f(I)$. With these notations (1) can be rewritten as

$$||f||^* = \sup_{I \in X} |f(I)|.$$

LEMMA 1. (a) X is a compact set, f(I) is a continuous function of I.

- (b) $||f||^* = \max_{I \in X} |f(I)|.$
- (c) $||f||^* \leq ||f||_p^p \leq (b-a) ||f||_p^p$.

The proof is easy and is omitted.

Let $f, f_m \in C[a, b], m = 1, 2, ...,$ and let f_m converge to f, uniformly on [a, b]. From (c) of Lemma 1 it easily follows that

$$\lim_{m \to \infty} \|[f_m - f]\|^* = 0.$$
 (2)

LEMMA 2. If $f \in C[a, b]$, and C is a real number, then

- (a) $||f||^* = 0$ if and only if f(x) = 0 for all $x \in [a, b]$,
- (b) $||Cf||^* = |C|^p ||f||^*$,
- (c) $\|\cdot\|^*$ does not satisfy the triangle inequality.

Proof. (a) and (b) are clear from the definition of $\|\cdot\|^*$.

(c) Let f > 0, g > 0. By the definition $||f||^* = \int_a^b f^p dx$, $||g||^* = \int_a^b g^p dx$ and $||f + g||^* = \int_a^b (f + g)^p dx$. Since $f^p + g^p < (f + g)^p$, this yields $||f||^* + ||g||^* < ||f + g||^*$.

LEMMA 3. If $I \in X_t$ and t > 0 is sufficiently small, then

(a)
$$I \to I^+ \in Z(f) \cup \{a, b\}, \text{ where } Z(f) = \{x \in [a, b]: f(x) = 0\},\$$

(b)
$$f(I + t) f(I - t) \leq 0, f(I^+ - t) f(I^+ + t) \leq 0,$$

(c) $S_t(I) f(I + t) \ge 0, S_t(I) f(I^+ - t) \ge 0.$

For the proof of (a) see [2, Lemma 1], and the rest is similar, too.

LEMMA 4. Assume that $f, f_m \in C[a, b], m = 1, 2, ... and f_m$ tends to f, uniformly on [a, b]. Then

$$\|f'\|^* = \lim_{m \to ++} \|f_m\|^*.$$
 (3)

Proof. At first, according to the Lebesgue Dominated Convergence Theorem, it follows that

$$\lim_{m \to ++} f_m(I) = f(I), \qquad \forall I \in X.$$
(4)

Next, it is easy to check that

$$\max_{I \in \mathcal{X}} |f_m(I)| - \max_{I \in \mathcal{X}} |f(I)| \leq \max_{I \in \mathcal{X}} \left[|f_m(I)| - |f(I)| \right].$$

Consequently from the property of the $\overline{\lim}$, the hypothesis of $f_m \to f$ and (4), we obtain that

$$\lim_{m \to \mathcal{X}} \left[\max_{I \in \mathcal{X}} |f_m(I)| - \max_{I \in \mathcal{X}} |f(I)| \right] \leq \lim_{m \to \mathcal{X}} \max_{I \in \mathcal{X}} \left[|f_m(I)| - |f(I)| \right] = 0.$$
(5)

Similary from

$$\max_{I \in X} |f_m(I)| - \max_{I \in X} |f(I)| \ge \min_{I \in X} [|f_m(I)| - |f(I)|],$$

it follows that

$$\lim_{m \to \infty} \left[\max_{I \in \mathcal{X}} |f_m(I)| - \max_{I \in \mathcal{X}} |f(I)| \right] \ge \lim_{m \to \infty} \min_{I \in \mathcal{X}} \left[|f_m(I)| - |f(I)| \right] = 0.$$
(6)

Combining (5) and (6) gives the result.

3. EXISTENCE

THEOREM 1. Let $f \in C[a, b]$. There exists a $u \in G = \text{span}\{g_1, ..., g_n\}$ for which

$$\inf_{v \in G} \|f - v\|^* = \|f - u\|^*.$$

Proof. Set $\inf_{e \in G} ||f - e||^* = C$. We may assume that C > 0. For m = 1, 2, ..., let $u_m = \sum_{k=1}^n a_k^{(m)} g_k \neq 0$ satisfy $\lim_{m \to \infty} ||f - u_m||^* = C$ and let $\mu_m = \max\{|a_k^{(m)}|: 1 \leq k \leq n\} > 0$. We first show that μ_m is a bounded sequence. If this is not the case, then there exists a subsequence, again denoted by μ_m , which tends to ∞ . By choosing a suitable subsequence, denoted by $\{\mu_m\}$,

CHEBYSHEV THEORY

we may assume that, for $i = 1, 2, ..., \mu_{m_i} = |a_{k_0}^{(m_i)}|$, with a fixed k_0 , and that, for k = 1, ..., n, $a_k^{(m_i)}/\mu_{m_i}$ converges, say, to a_k , $|a_k| \le 1$, and $|a_{k_0}| = 1$. Set $v = \sum_{k=1}^n a_k g_k$ and $v_m = \mu_m^{-1}(f - u_m)$, m = 1, 2, ... Then v_{m_i} tends uniformly to -v on [a, b]. Since $v \ne 0$, $||v||^* > 0$. By (3), we have $\lim_{i \to +\infty} ||v_{m_i}||^* =$ $||v||^* > 0$. However.

$$\lim_{t \to \infty} \|v_{m_t}\|^* = \lim_{t \to \infty} \|\mu_{m_t}^{-1}(f - u_{m_t})\|^* = \lim_{t \to \infty} \|\mu_{m_t}^{-p}\| \|f - u_{m_t}\|^* = 0.$$

This contradiction proves that μ_m is bounded.

Hence there are integers $1 \le m_1 < m_2 < \cdots$ and reals $a_1, a_2, ..., a_n$ for which $\lim_{i \to \infty} a_k^{(m_i)} = a_k$, k = 1, ..., n. Thus $\lim_{i \to \infty} u_{m_i} = u = \sum_{k=1}^n a_k g_k$ uniformly on [a, b]. By (3)

$$||f - u||^* = \lim_{i \to J} ||f - u_{m_i}||^* = C.$$

The definition of C implies that

$$\inf_{v \in G} \|f - v\|^* = \|f - u\|^*.$$

4. CHARACTERIZATION

DEFINITION 1. Let $f \neq 0$. An $I \in X_f$ is said to be a definite interval of f if there is no $J \subset I$ satisfying f(J) = -f(I). The set of all definite intervals of f is denoted by X_f^* .

An $I \in X_{f}^{*}$ is said to be a maximal (resp. minimal) definite interval of f if there is no $J \supset I$ (resp. $J \subset I$) satisfying $J \in X_{f}^{*}$ and $J \neq I$. The set of all maximal (resp. minimal) definite intervals of f is denoted by X_{f}^{M} (resp. X_{f}^{m}).

DEFINITION 2. $\{I_1, ..., I_m\} \subset X \setminus \{0\}$ is said to be weakly increasing if

- (a) $I_i < I_{i+1}, I_i < I_{i+1}, i = 1, ..., m-1.$
- (b) $I_i^+ < I_{i+2}, i = 1, ..., m-2.$

If I and J are nonempty subintervals of [a, b], I < J := x < y for all $x \in I$ and $y \in J$.

 $\{I_1, ..., I_m\} \subset X \setminus \{0\}$ is said to be increasing if $I_1 < \cdots < I_m$.

A system of extended intervals $I_1, ..., I_m$, i.e., $I_i \in X$ or $I_i = \{x\}$, $x \in [a, b]$, is said to be increasing if $I_1 < \cdots < I_m$.

LEMMA 5. (a) X_t^* , X_t^M , and X_t^m must exist.

(b) X_{f}^{M} is finite. Meanwhile $X_{f}^{M} = \{I_{i}\}_{1}^{N}$ with $I_{1} \leq \cdots \leq I_{N}$ is weakly increasing and satisfies $f(I_{i+1}) = -f(I_{i}), i = 1, ..., N-1$.

MING FANG

(c) X_f^m is finite. Meanwhile $X_f^m = \{J_{i+1}^{+N} \text{ with } J_{\pm} < \cdots < J_N \text{ is increasing and satisfies } f(J_{i+1}) = -f(J_i), i = 1, ..., N-1.$

(d) Card $X_{f}^{M} = \text{Card } X_{f}^{m}$, denoted by N_{f} . Furthermore if $X_{f}^{M} = \{I_{1}, ..., I_{N_{f}}\}$ and $X_{f}^{m} = \{J_{1}, ..., J_{N_{f}}\}$ are weakly increasing, then $J_{i} \subset I_{i}$, $f(I_{i} \setminus J_{i}) = 0$, $i = 1, ..., N_{f}$, and $J_{i} = (I_{i-1}, I_{i+1})$, $i = 2, ..., N_{f} - 1$.

The proof is similar to that of [2, Lemmas 4 7 and Theorems 2 4].

LEMMA 6. Let $r, v \in C[a, b]$ and $I \in X$. Then

$$\lim_{\lambda \to 0} \frac{(r+\lambda v)(I) - r(I)}{\lambda} = p \int_{I} v |r|^{p-1}.$$

Proof. By definition,

$$\lim_{\lambda \to 0} \frac{(r+\lambda v)(I) - r(I)}{\lambda} = \lim_{\lambda \to 0} \int_{I} \frac{(r+\lambda v)|r+\lambda v|^{p-1} - r|r|^{p-1}}{\lambda}.$$
 (7)

Set $\Phi(\lambda) = (r + \lambda v) |r + \lambda v|^{p-1}$ Clearly $\Phi(\lambda)$ is a continuous function of λ and

$$\boldsymbol{\Phi}'(\lambda) = \begin{cases} \frac{d(r+\lambda v)^{p}}{d\lambda} = pv(r+\lambda v)^{p-1} & r+\lambda v > 0, \\ 0, & r+\lambda v = 0, \\ -\frac{d(-r-\lambda v)^{p}}{d\lambda} = pv(-r-\lambda v)^{p-1} & r+\lambda v < 0. \end{cases}$$
$$= pv |r+\lambda v|^{p-1}.$$

Hence, there exists ξ , $|\xi| < |\lambda|$, satisfying

$$\left|\frac{\Phi(\lambda)-\Phi(0)}{\lambda}\right| = |\Phi'(\xi)| = pv |r+\xi v|^{p-1} \leq p |v| [|r|+|v|]^{p-1}$$

for $|\lambda| \leq 1$. This implies that $[\Phi(\lambda) - \Phi(0)]/\lambda$ is dominated by $p \|v\| [|r| + |v|]^{p-1}$. Thus according to the Lebesgue Dominated Convergence Theorem, we obtain that

$$\lim_{\lambda \to 0} \int_{I} \frac{(r + \lambda v) |r + \lambda v|^{p-1} - r |r|^{p-1}}{\lambda}$$
$$= \int_{I} \lim_{\lambda \to 0} \frac{(r + \lambda v) |r + \lambda v|^{p-1} - r |r|^{p-1}}{\lambda}$$
$$= \int_{I} \Phi'(0) = \int_{I} pv |r|^{p-1}$$

This combined with (7) completes the proof.

THEOREM 2. Let $G = \text{span}\{g_1, ..., g_n\}$ be an n-dimensional subspace of $C[a, b], f \in C[a, b] \setminus G, u \in G, r = f - u, S(I) := S_r(I)$. Then a necessary condition for u to be a best approximation to f from G is that there do not exist $v \in G$ such that

$$S(I) \int_{I} v |r|^{p-1} > 0, \qquad \forall I \in X_r.$$
(8)

Proof. Suppose to the contrary that there is a $v \in G$ satisfying (8). At first for each $I \in X_r$, it follows from Lemma 6 that

$$\lim_{\lambda \to 0} \frac{S(I)(r + \lambda v)(I) - S(I) r(I)}{\lambda} = pS(I) \int_{I} v |r|^{p-1} > 0.$$

Therefore $[S(I)(r + \lambda v)(I) - S(I) r(I)]/\lambda$ is a continuous function of λ and I and hence there exist sufficiently small positive numbers λ_I and v_I such that

$$[S(I)(r+\lambda v)(I) - S(I) r(I)]/\lambda > 0$$

and

$$S_{r-\lambda v}(J) = S_{r-\lambda v}(I) = S(I)$$

for all $0 < \lambda < \lambda_I$ and $J \in A(I, \varepsilon_I) = \{J \in X : |J - I| + |J^+ - I^+| \leq \varepsilon_I \}$. Thus we have

$$|(r - \lambda v)(J)| < S(I) r(J) \leq S(I) r(I) = ||r||^*, \qquad J \in A(I, v_I), \ 0 < \lambda \leq \lambda_I.$$
(9)

On the other hand, for each $I \notin X_r$, clearly $|r(I)| < ||r||^*$. By the continuity of $(r - \lambda v)(I)$, there also exist sufficiently small positive numbers λ_I and v_I , for which (9) does hold.

Secondly, it is clear that the compact set X is covered by an open covering $\bigcup_{I \in X} \mathcal{A}(I, v_I)$. Hence we can collect a finite number of elements from the covering, denoted by $\{\mathcal{A}(I_i, v_I_i)\}_{i=1}^k$, for which

$$\bigcup_{i=1}^{k} \Delta(I_i, \varepsilon_{I_i}) \supset X.$$

In other words, for each $I \in X$, there exists a j, $1 \le j \le k$, such that $I \in A(I_j, \varepsilon_{I_j})$. Set $\tilde{\lambda} = \min\{\lambda_{I_1}, ..., \lambda_{I_k}\}$. Clearly $0 < \tilde{\lambda} \le \lambda_{I_j}$. From (9) we see immediately that, for all $0 < \lambda \le \tilde{\lambda}$, $|(r - \lambda \varepsilon)(I)| < ||r||^*$. This implies that, for all $0 < \lambda \le \tilde{\lambda}$, we have

$$||r - \lambda v||^* < ||r||^*.$$

This contradicts the hypothesis that u is a best approximation to f.

MING FANG

In the following, we shall be concerned with particular *n*-dimensional subspaces of C[a, b], called *QT*-subspaces, considered by Y.-G. Shi [2], for which we can obtain a complete characterization of best approximation.

DEFINITION 3. A system of functions $\{g_1, ..., g_n\} \subset C[a, b]$ is said to be a quasi-Chebyshev system on [a, b] (or a *QT*-system) and an *n*-dimensional subspace $G = \operatorname{span}\{g_1, ..., g_n\}$ a *QT*-subspace if

$$D(I_1, ..., I_n) := \det \left| \int_{I_i} g_j \, dx \right|_{i, j=1}^n \neq 0,$$

whenever $\{I_i\}_1^n \subset X$ is increasing.

The following equivalent properties of a QT-system are from [2, Theorem 6].

THEOREM 3. Let $G = \text{span}\{g_1, ..., g_n\} \subset C[a, b]$. Then the following statements are equivalent:

- (a) $\{g_1, ..., g_n\}$ is a QT-system.
- (b) For any weakly increasing intervals $I_1, ..., I_n, D(I_1, ..., I_n) \neq 0$.

(c) $\{g_1, ..., g_n\}$ is a nondegeneracy weak Chebyshev system on [a, b] (see [3]).

Before describing our result, let us note

LEMMA 7. Let $r, v \in C[a, b], \{I_i\}_1^m \subset X$ be weakly increasing and e = 1 or -1, fixed. Suppose

$$(-1)^i e \int_{I_i} v |r|^{p-1} \ge 0, \qquad i=1, ..., m.$$

Then

(a) There exist m intervals $J_1, ..., J_m, J_1 < \cdots < J_m$, such that

$$(-1)^{i} e \int_{J_{i}} v |r|^{p-1} \ge 0, \qquad i=1,...,m.$$

Furthermore, if $v(x) \neq 0$ on any nontrivial interval $r(x) \neq 0$ on each I_i , $\{J_i\}_{i=1}^m$ may be chosen so that

$$(-1)^{i} e \int_{J_{i}} v |r|^{p-1} > 0, \qquad i = 1, ..., m.$$

(b) If m > 1, there exist m - 1 intervals $K_1, ..., K_{m-1}, K_1 < \cdots < K_{m-1}$, such that

$$\int_{K_i} v |r|^{p-1} = 0, \qquad i = 1, ..., m-1.$$

In addition, if $v(x) \neq 0$ on any nontrivial interval and $r(x) \neq 0$ on each I_i , then $\{K_i\}_1^{m-1}$, $K_1 < \cdots < K_{m-1}$ may be chosen so that

$$\int_{\mathcal{K}_i} v |r|^{p-1} = 0, \qquad i = 1, ..., m-1.$$

and $r(x) \not\equiv 0$ on each K_i .

The proof is similar to that of [2, Lemma 8].

LEMMA 8. Let $G = \text{span}\{g_1, ..., g_n\}$ be an n-dimensional QT-subspace of $C[a, b], \{I_i\}_1^n \subset X$ be weakly increasing. If $v \in G$, $r \in C[a, b]$ are such that $r(x) \neq 0$ on each I_i , and $\int_{I_i} v |r|^{p-1} = 0$, i = 1, ..., n, then v = 0.

Proof. Suppose to the contrary that $v \neq 0$ and the conditions of the lemma hold. Take x, $\max\{I_n, I_{n-1}^+\} < x < I_n^+$, and denote $J_n = (I_n, x)$, $J_{n+1} = (x, I_n^+)$, and $J_i = I_i$, for i = 1, ..., n-1. We see that $J_1, ..., J_{n+1}$ are also weakly increasing, $r(x) \not\equiv 0$ on each J_i , and $(-1)^i e \int_{J_i} v |r|^{p-1} \ge 0$, i = 1, ..., n+1, where e = 1 or -1, fixed. By Theorem 3, $\{g_1, ..., g_n\}$ is a nondegeneracy WT-system, hence v does not identically vanish on any nontrivial interval. By Lemma 7, there exist $\{K_i\}_1^n \subset X, K_1 < \cdots < K_n$, such that $r(x) \not\equiv 0$ on each K_i and $\int_{K_i} v |r|^{p-1} = 0$, for i = 1, ..., n. This implies that v has at least one sign change on each K_i . Thus v has totally at least n sign changes. This is impossible because of G being a WT-subspace, which ends the proof.

COROLLARY 1. Let $G = \text{span}\{g_1, ..., g_n\}$ be an n-dimensional QTsubspace of C[a, b]. Let $\{I_i\}_{i=1}^{n+1} \subset X$ be weakly increasing and e = 1 or -1, fixed. Let $r \in C[a, b]$ and $r(x) \neq 0$ on each I_i , i = 1, ..., n + 1. If $v \in G$ satisfies

$$(-1)^{i} e \int_{I_{i}} v |r|^{p-1} \ge 0, \qquad i = 1, ..., n+1,$$

then v = 0.

COROLLARY 2. Let $G = \text{span} \{g_1, ..., g_n\}$ be an n-dimensional QTsubspace of C[a, b]. Let $\{I_i\}_{i=1}^{n-1} \subset X$ be increasing and $r \in C[a, b] \setminus \{0\}$. Then there exists a nonzero polynomial $v \in G$ such that

(a)
$$\int_L v |r|^{p-1} = 0, \quad i = 1, ..., n-1.$$

MING FANG

(b) v changes sign one time on each I_i , i = 1, ..., n and has no sign change in each (I_i^+, I_{i+1}) , i = 0, 1, ..., n - 1, where $I_0^+ = a$, $I_n^- = b$.

Proof. Suppose r do not identically vanish on m intervals of $\{I_i\}_{1=1}^{n-1}$, $1 \le m \le n-1$, denoted by $\{J_i\}_{1=1}^{m}$, and the rest by $\{J_i\}_{m+1}^{n-1}$. Note the following linear equations

$$\sum_{j=1}^{n} c_{j} \int_{J_{i}} g_{j} |r|^{p-1} = 0, \qquad i = 1, ..., m,$$

$$\sum_{j=1}^{n} c_{j} \int_{J_{i}} g_{j} = 0, \qquad i = m+1, ..., n-1.$$
(10)

Since $\{g_1, ..., g_n\}$ is a *QT*-system, it follows by using the theory of linear equations that (10) has a nonzero solution $c_j, j = 1, ..., n$. Set $v = \sum_{j=1}^{n} c_j g_j$. It is easy to check that

$$\int_{J_i} v |r|^{p-1} = 0, \qquad i = 1, ..., m,$$

$$\int_{J_i} v = 0, \qquad i = m+1, ..., n-1.$$
(11)

Consequently, according to the above notation and the fact G is a nondegeneracy WT-subspace, we conclude from (11) that v satisfies (a) and (b).

LEMMA 9. Let $G = \text{span} \{g_1, ..., g_n\}$ be an n-dimensional QT-subspace of $C[a, b], r \in C[a, b]$. Let a system of extended intervals $\{I_i\}_{i=1}^{m} = \{I'_i\} \cup \{x_k\}$ be increasing where $\{I'_i\} \subset X$ and $\{x_k\} \subset (a, b)$. Suppose m < n. Then there exists a nonzero polynomial $v \in G$ such that

(a) $\int_{I_i} v |r|^{p-1} = 0, i = 1, ..., m.$

(b) v changes sign on each I_i , i = 1, ..., m. (If $I_i = x_k$, this means that v changes sign at x_k .)

Proof. Put for t > 0 sufficiently small

$$J_{i} = \begin{cases} (b - (n - i)t, b - (n - i - 1)t), & i = m + 1, ..., n - 1 \text{ if } m < n - 1 \\ (x_{i} - t, x_{i} + t) & \text{if } I_{i} \in \{x_{k}\} \\ I_{i} \setminus \{(\bigcup [b - (n - i)t, b - (n - i - 1)t]) \\ \cup (\bigcup [x_{i} - t, x_{i} + t])\} & \text{if } I_{i} \in \{I_{i}'\}. \end{cases}$$

We see that $\{J_i\}$ is also increasing if t > 0 is sufficiently small. By Corollary 2, there exists a nonzero polynomial $v_i \in G$ such that

CHEBYSHEV THEORY

 $\int_{J_i} v_i |r|^{p-1} = 0$, i = 1, ..., n-1, v_i changes sign one time on each J_i . i = 1, ..., n-1, and has no sign change in each interval (J_i^+, J_{i+1}^-) , i = 0, 1, ..., n-1, where $J_0^+ = a$, $J_n^- = b$. The polynomial v_i can be assumed normalized in the sense that $||v_i||^* = 1$. Letting $t \to 0$, we select a limit polynomial $v \in G$ satisfying $\int_{I_i} v |r|^{p-1} = 0$, i = 1, ..., m, and for which v has no sign change in each interval (I_i^+, I_{i+1}^-) , i = 0, 1, ..., m, where $I_0^+ = a$, $I_n = b$. It is not difficult to check that v changes sign on each I_i , i = 1, ..., m, and has exactly m sign changes. This completes the proof.

We now state our main result.

THEOREM 4. Let $G = \text{span}\{g_1, ..., g_n\}$ be an n-dimensional QT-subspace of $C[a, b], f \in C[a, b] \setminus G, u \in G, r = f - u$ and $S(I) := S_r(I)$. Then the following statements are equivalent.

- (a) u is a best approximation to f from G.
- (b) There does not exist a $v \in G$ such that

$$S(I) \int_{I} v |r|^{p-1} > 0, \qquad \forall I \in X_r.$$

(c) The origin of n space lies in the convex hull of the set $\{S(I)\hat{I}: I \in X_r\}$, where $\hat{I} = (\int_I g_1 |r|^{p-1}, ..., \int_I g_n |r|^{p-1})$.

- (d) $\max_{I \in X_{\tau}} S(I) \int_{I} v |r|^{p-1} \ge 0, \forall v \in G.$
- (e) $\max_{I \in \mathcal{X}_{\epsilon}} S(I) \int_{I} v |r|^{p-1} > 0, \forall v \in G \setminus \{0\}.$
- (f) $N_r \ge n+1$.

Proof. Theorem 2 has shown that (a) \Rightarrow (b), and (b) \Leftrightarrow (c) \Leftrightarrow (d) is clear by means of well-known arguments. We now show the other equivalences. Denote $N = N_r$ and $X_r^m = \{I_1, ..., I_N\}$ with $I_1 < \cdots < I_N$. Clearly, $r(x) \neq 0$ on each I_i , i = 1, ..., N. Assume without loss of generality that $S(I_1) > 0$.

(b) \Rightarrow (f). Suppose on the contrary that $N \leq n$. Put

$$K_{i} = \begin{cases} (I_{i}^{+}, I_{i+1}^{+}) & \text{if } i = \text{odd} \\ (I_{i}^{+}, I_{i+1}^{-}) & \text{if } i = \text{even and } I_{i}^{+} < I_{i+1} \\ I_{i}^{+} & \text{if } i = \text{even and } I_{i}^{+} = I_{i+1}. \end{cases}$$
(*i* = 1, ..., *N*-1).

Obviously the system of extended intervals $\{K_i\}_{i=1}^{N-1}$ is increasing. By Lemma 9, there is a nonzero polynomial $v \in G$ such that $\int_{K_i} v |r|^{p-1} = 0$, i = 1, ..., N-1, v changes sign on each K_i , i = 1, ..., N-1, and v has exactly N-1 sign changes on [a, b]. We assume that $\int_{I_1} v |r|^{p-1} > 0$ (taking -vinstead of v if necessary). Denote $K_0 = (a, K_{\perp}), K_N = (K_{N-1}^{+}, b)$. Assertion.

$$(-1)^{i+1} \int_{K_i}^{x} v |r|^{p-1} \ge 0, \qquad x \in \overline{K}_i, i > 0.$$
 (12)

$$(-1)^{i+1} \int_{x}^{K_{i}^{+}} v |r|^{p-1} \leq 0, \qquad x \in \overline{K}_{i}, i < N.$$
(13)

where $\overline{K}_i = [K_i, K_i^+]$.

Proof. If $K_i = \{x_k\}$, clearly, the equality in (12) and (13) holds. In the following we assume K_i is a nontrivial interval.

Case (i). 0 < i < N. In this case it follows from $\int_{K_i} v |r|^{p-1} = 0$ that $\int_{K_i}^{x} v |r|^{p-1} = -\int_{x}^{K_i} v |r|^{p-1}$. Since $\int_{I_i} v |r|^{p-1} > 0$ and v has exactly one sign change on K_i , we see immediately that

$$(-1)^{i+1} \int_{K_{i}}^{x} v |r|^{p-1} \ge 0,$$

$$(-1)^{i+1} \int_{x}^{K_{i}^{+}} v |r|^{p-1} \le 0,$$
(14)

Case (ii). i = 0. Since v changes sign once in (K_0, K_1^+) , and that only in (K_1, K_1^+) , it follows from the assumption of $\int_{I_1} v |r|^{p-1} > 0$ that $\int_{X_0}^{K_0^+} v |r|^{p-1} \ge 0$, where $x \in \overline{K}_0$.

Case (iii). i = N. Applying the second inequality of (14) to the case i = N - 1, we get that

$$(-1)^{N} \int_{x}^{K_{N-1}} v |r|^{p-1} \leqslant 0, \qquad x \in \overline{K}_{N-1}.$$
(15)

Next note that v changes sign once in (K_{N-1}, K_N^+) , and that only in (K_{N-1}^-, K_{N-1}^+) . Hence from (15) it is easy to infer that

$$(-1)^{N+1}\int_{K_N^-}^x v |r|^{p-1} \ge 0, \qquad x \in \overline{K}_N.$$

Now let $I \in X_r$ be arbitrary. Then I must contain an odd number of I_i 's, say $I \supset (I_i \cup \cdots \cup I_{j+2k})$, where $j \ge 1$, $j+2k \le N$, $k \ge 0$. Thus $I \supset (K_j \cup \cdots \cup K_{j+2k-1})$. Letting $L = (I \ , K_{j-1}^{+})$ and $R = (K_{j+2k}, I^{+})$, we have that

$$\int_{I} v |r|^{p-1} = \int_{L} v |r|^{p-1} + \sum_{\ell=j}^{j+2k-1} \int_{K_{\ell}} v |r|^{p-1} + \int_{R} v |r|^{p-1}$$
$$= \int_{L} v |r|^{p-1} + \int_{R} v |r|^{p-1}$$
(16)

104

and

$$(-1)^{j} \int_{L} v |r|^{p-1} \leq 0$$

$$(17)$$

$$(-1)^{j+2k+1} \int_{R} v |r|^{p-1} \geq 0$$

because of (12) and (13).

On the other hand, by the definition of L and R, it follows that

(

$$L = (I , K_{j-1}^+) \supset I_j \qquad \text{if} \quad j = \text{even}, \tag{18}$$

$$R = (K_{j+2k}, I^+) \supset I_{j+2k}$$
 if $j = \text{odd}.$ (19)

Clearly, either (18) or (19) must occur. Then along with the condition that $r(x) \neq 0$ on each I_i , i = 1, ..., N, we assert that r does not identically vanish on at least one of L and R. Thus at least one of the strict inequalities in (17) must hold. This combined with (16) and (17) gives that

$$(-1)^{j+1} \int_{I} v |r|^{p-1} > 0.$$

Next by the assumption of $S(I_1) > 0$, we get that $S(I) = S(I_j) = (-1)^{j+1} S(I_1) = (-1)^{j+1}$ and whence $S(I) \int_I v |r|^{p-1} > 0$, contradicting (b).

(f) \Rightarrow (e). If not, let $v \in G \setminus \{0\}$ satisfy $\max_{I \in X_r} S(I) \int_I v |r|^{p-1} \leq 0$. Then $\max_{I \in X_r^m} S(I) \int_I v |r|^{p-1} \leq 0$ or $S(I_i) \int_{I_i} v |r|^{p-1} \leq 0$, i = 1, ..., N. Since $S(I_i) = (-1)^{i+1} S(I_1), (-1)^i S(I_1) \int_{I_i} v |r|^{p-1} \geq 0$, i = 1, ..., N. Then because of $r(x) \neq 0$ on each I_i , i = 1, ..., N, it follows from Corollary 1 that v = 0, a contradiction.

(e) \Rightarrow (d). It is trivial to verify.

(f) \Rightarrow (a). Suppose on the contrary that there exists a $v \in G \setminus \{0\}$ such that $||r-v||^* \leq ||r||^*$. Whence for $\{I_i\}_{i=1}^N$,

$$S(I_j) \int_{I_j} (r-v) |r-v|^{p-1} < S(I_j) \int_{I_j} r |r|^{p-1}, \qquad j=1, ..., N.$$

This implies that for each j, $1 \le j \le N$, there exists a point x_j , $x_j \in I_j$, such that

$$S(I_j)(r-v)(x_j) < S(I_j) r(x_j), \qquad j = 1, ..., N.$$
 (20)

From (20) it is easy to conclude that $v \neq 0$ has at least *n* sign changes, which contradicts the fact that *G* is also a *WT*-subspace. This completes the proof.

We now provide an analogue of a fundamental result of de La Vallée Poussin.

THEOREM 5. Let $G = \text{span}\{g_1, ..., g_n\}$ be an n-dimensional QT-subspace of C[a, b]. Let $v \in G$ satisfy

$$(-1)^i c \int_{T_i} (f-v) |f-v|^{p-1} \ge 0, \qquad i=1, ..., n+1,$$

where $(I_{i+1}^{+n+1} \subset X, I_1 < \dots < I_{n+1} \text{ and } e = 1 \text{ or } -1, fixed. Then$

$$\inf_{u \in G} \|f - u\|^* \ge \min_{1 \le v \le n+1} \left| \int_{U} (f - v) |f - v|^{p-1} \right|$$

The equality can occur if and only if v is a best approximation to f and $\{I_i\} \subset X_{f-v}$.

Proof. Letting $u \in G$ be a best approximation to f, $|f-u||^* \leq \min_{1 \leq i \leq n+1} |\int_{I_i} (f-v) |f-v|^{p-1}$ implies that

$$\int_{I_{i}} (f-u) |f-u|^{p-1} \leqslant \min_{1 \leqslant i \leqslant n+1} \left| \int_{I_{i}} (f-v) |f-v|^{p-1} \right|, \qquad j=1, ..., n+1.$$

If for every, $i, 1 \le i \le n+1$, there exists a point $x_i, x_i \in I_i$, for which

$$(-1)^{i} e(f-u)(x_{i}) < (-1)^{i} e(f-v)(x_{i}), \qquad i=1, ..., n+1,$$

then it is not difficult to see that this is impossible by using the fact that G is a WT-subspace. Therefore there must exist a $j, j \in \{1, ..., n+1\}$, such that

$$(-1)^{i} e(f-u)(x) = (-1)^{i} e(f-v)(x)$$
 for all $x \in I_{i}$.

This combined with the fact again that G is a nondegeneracy WT-subspace yields that v = u and of course, $\{I_i\} \subset X_{j-v}$. Conversely, if v is a best approximation to f and $\{I_i\} \subset X_{j-v}$ then equality occurs.

5. UNIQUENESS

THEOREM 6. Let u be a best approximation from G to $f \in C[a, b]$. If G is a QT-subspace of C[a, b], then u is unique.

Proof. If $f \in G$, then u = f is unique. Now suppose $f \notin G$. If possible, let $v \in G$ be another best approximation. Then for $X_{f-u}^m = \{I_i\}_{1}^{N_{f-u}}, I_1 < \cdots < I_{N_{t-u}}$, we have

$$(-1)^{i} e \int_{T_{i}}^{\infty} (f-u) |f-u|^{p-1} > 0,$$

where $e = -S_{f-u}(I_1)$ and

$$\|f - v\|^* = \|f - u\|^* = \min\left\{ \left| \int_{I_i} (f - u) |f - u|^{p-1} \right| : 1 \le i \le N_f - u \right\}.$$

As in the proof of Theorem 5 we assert u = v.

LEMMA 10. Let G be an n-dimensional subspace of C[a, b]. Then there exists a positive number C such that

$$\|v\|^* \ge C \|v\|_{\ell_t}^p, \qquad \forall v \in G.$$

$$(21)$$

Proof. If v = 0, (21) is trivial. Otherwise, set

$$C = \inf_{v \in G \to \{0\}} \frac{\|v\|^*}{\|v\|_{\chi}^{p}},$$

we shall prove that C > 0. Suppose C = 0, then there exists a sequence $v_k \in G \setminus \{0\}$ such that

$$\frac{\|v_k\|^*}{\|v_k\|_{k}^p} \to 0, \qquad k \to \infty.$$

This means that for $u_k = v_k / ||v_k||$, we have $||u_k||_* = 1$ and $||u_k||^* \to 0$, $k \to \infty$. Suppose without loss of generality that $u_k \to v$. Then $||v||_* = 1$ and by (3)

$$||v||^* = \lim_{k \to \infty} ||u_k||^* = 0.$$

a contradiction.

Remark. This conclusion still holds if we take $G - f = \{v - f : v \in G\}$ instead of G.

With this conclusion we now present the strong uniqueness theorem.

THEOREM 7. Let $G = \text{span}\{g_1, ..., g_n\}$ be a QT-subspace, $u \in G$ is a best approximation to f. Then there exists a constant $\gamma > 0$ depending only on f such that for any $v \in G$

$$||f-v||^* \ge ||f-u||^* + \gamma ||u-v||_{\chi}^q$$

where $1 \leq q \leq p$.

Proof. If $f \in G$, it is trivial. Thus we assume $f \notin G$.

For any $v \neq u$, set

$$\gamma(v) = \frac{\|f - v\|^* - \|f - u\|^*}{\|u - v\|_{\ell}^q}$$

We shall prove that $\gamma(v)$ has a positive lower bound. If this is not the case, then there exists a sequence $v_k \in G$, with $v_k \neq u$, k = 1, 2, ..., such that

$$\gamma(v_k) = \frac{\|f - v_k\|^* - \|f - u\|^*}{\|u - v_k\|^q} \to 0, \qquad k \to \infty.$$

We first prove that $||u-v_k||_{\gamma}^q$ is a uniformly bounded sequence. In fact, if $||u-v_k||_{\gamma}^q \to \infty$, $k \to \infty$, it follows from $||f-v_k||_{\gamma}^q \to \infty$ and $||f-v_k||^* \ge C ||f-v_k||_{\gamma}^q \to C ||f-v_k||_{\gamma}^q$ that

$$\lim_{k \to +\infty} \gamma(v_k) \ge \lim_{k \to +\infty} \frac{C \|f - v_k\|_{\infty}^q - \|f - u\|^*}{\|u - v_k\|_{\infty}^q} \ge C.$$

This contradiction proves that $||u - v_k||_{\ell_k}^q$ is bounded. Hence there is a positive constant M, for which $||u - v_k||_{\ell_k}^q \leq M$, k = 1, 2, ... Without loss of generality assume that v_k converges uniformly to v, then it remains to check that v satisfies $||u - v||_{\ell_k}^q \leq M$, $v \in G$, and $\gamma(v) = 0$. Consequently applying Theorem 6 we obtain v = u.

Next set $C = \inf_{w \in G, |w|_{x} = 1} \max_{I \in X_{r-u}} S_{f-u}(I) \int_{I} pw |f-u|^{p-1}$. Clearly C > 0 from (e) of Theorem 4. Set r = f - u, $S_r(I) = S(I)$, and $v_k = u - \alpha_k$, where $\alpha_k \in G$ and α_k converges uniformly to 0 since v_k converges uniformly to v = u. Similar to the proof of Lemma 6, we can conclude that

$$\lim_{\alpha_k(x) \to 0} \frac{\left[(r + \alpha_k) | r + \alpha_k |^{p-1} \right](x) - \left[r | r |^{p-1} \right](x)}{\alpha_k(x)} = \left[p | r |^{p-1} \right](x)$$

for any $x \in [a, b]$.

Hence from the fact $|\alpha_k/||\alpha_k||$, $|\leq 1$ we have

$$\lim_{\alpha_{k} \to 0} \Psi(\alpha_{k}) = \lim_{\alpha_{k} \to 0} \int_{I} \frac{\alpha_{k}}{\|\alpha_{k}\|_{x}} \left[\frac{(r+\alpha_{k}) |r+\alpha_{k}|^{p-1} - r|r|^{p-1}}{\alpha_{k}} - p|r|^{p-1} \right] = 0$$
(22)

by using Lebesgue convergence Theorem.

Taking any $I \in X_r$ for which

$$pS(I)\int_{I}\frac{\alpha_{k}}{\|\alpha_{k}\|_{\infty}}|r|^{p-1} \geq C.$$

108

We calculate

$$\gamma(v_{k}) \geq \frac{S(I) \int_{I} (r + \alpha_{k}) |r + \alpha_{k}|^{p-1} - S(I) \int_{I} r |r|^{p-1}}{\|\alpha_{k}\|_{2}^{q}}$$

= $\|\alpha_{k}\|_{2}^{1-q} \left[S(I) \bar{\Psi}(\alpha_{k}) + pS(I) \int_{I} \frac{\alpha_{k}}{\|\alpha_{k}\|_{2}} |r|^{p-1} \right]$
 $\geq \|\alpha_{k}\|_{2}^{1-q} \left[S(I) \bar{\Psi}(\alpha_{k}) + C \right].$

By (22),

$$\gamma(v) = \lim_{k \to \infty} \gamma(v_k) = \begin{cases} C & \text{if } q = 1, \\ \infty & \text{if } 1 < q \leq p \end{cases}$$

a contradiction. This complete the proof.

ACKNOWLEDGMENT

I am greatly indebted to Professor Y.-G. Shi for his enthusiastic guidance and help in this work.

REFERENCES

- A. PINKUS AND O. SHISHA, Variation on the Chebyshev and L^q-theories of best approximation, J. Approx. Theory 35 (1982), 148-168.
- 2. Y.-G. SHI, The Chebyshev theory of a variation of *L* approximation, submitted for publication.
- 3. D. ZWICK, Degeneracy in WT-Spaces, J. Approx. Theory 41 (1984), 100-113.