The Chebyshev Theory of a Variation of $L_{\rho}(1<p<\infty)$ Approximation Ming Fang
 Department of Applied Mathematics. Beifing Institute of Aeronatutics and Astronautics. Beijing. People's Repuhlic of Chinu

 Communicatod by Allan PinkusReceived July 27. 1987: revised February 29, 1989

In this paper. we study a variation of best l.p approximation obtained by using a new "norm." We consider the questions of existence and uniqueness and also prove analogues of the essentials of the classical theory of best uniform approximation: characterization (Theorem 4). de La Vallee Poussin's bound (Theorem 5) and strong uniqueness (Theorem 7). '1090 Acadenic Press. Inc

1. Introduction

After Pinkus and Shisha [1] proposed a new method of approximation using L_{p}-type "norms" (gauges), Y.-G. Shi [2] introduced another method of approximation in the case $p=1$. This method maintains many essentials of the classical theory of best uniform approximation and has a distinct advantage over the corresponding one for L_{1} best approximation, in that the unique best approximation is characterized by a remarkable geometric property. In this paper, we propose another L_{p}-type measure $\left\|^{*}\right\|^{*}$ $(1<p<\infty)$ in terms of the technique of [2] in order to study the same questions of existence, uniqueness and characterization. In the special case $p=1$, the measure $\|\cdot\|^{*}$ is the norm $\|\cdot\|$ defined in [2].

2. Prelimivarils

Let $C[a, b]$ be the class of real-valued functions continuous on $[a, b]$. For $f \in C[a, b]$ and $1<p<x$, we define

$$
\begin{equation*}
\left\|f^{\prime}\right\|^{*}=\sup \left\{\left.\left|\int_{1}^{d} f\right| f\right|^{\prime \prime} \quad \text { ' } d x \mid: a \leqslant c \leqslant d \leqslant b\right\} . \tag{1}
\end{equation*}
$$

Let G be an n-dimensional subspace of $C[a, b]$. We consider the following problem: For a given $f \in C[a, h]$, find a $u \in G$ such that

$$
\|f-u\|^{*}=\inf _{r \in r_{i}}\|f-v\|^{*}
$$

Such a polynomial u (if any) is said to be a best approximation to f from G.

Now we introduce the basic notations and definitions. Denote $X:=$ $\{I=(c, d): I \subset[a, b]\}$. We adopt the convention that X contains the unique "zero" element $0=(c, c)$. If $I=(c, d) \in X\{0\}$, we write $I=c$ and $I^{\cdot}=d$. In the following, we always assume that $f \in C[a, b]$. For ease of notation we set $f(I):=\int, f|f|^{p} \quad d x, X_{f}:=\left\{I \in X:|f(I)|=\|\left. f\right|^{*}\right\}$, and $S_{,}(I):=\operatorname{sgn} f(I)$. With these notations (1) can be rewritten as

$$
\|f\|^{*}=\sup _{r x}|f(I)| .
$$

Lemma 1. (a) X is a compact set, $f(I)$ is a continuous function of I.
(b) $\|f\|^{*}=\max _{f \in \mathcal{A}}|f(I)|$.
(c) $\|f\|^{*} \leqslant\|f\|_{p}^{p} \leqslant(b-a)\|f\|^{p}$,

The proof is easy and is omitted.
Let $f, f_{m} \in C[a, b], m=1,2, \ldots$, and let f_{m} converge to f, uniformly on $[a, b]$. From (c) of Lemma 1 it easily follows that

$$
\begin{equation*}
\lim _{m \rightarrow} \mid f_{m}-f^{\prime} \|^{*}=0 \tag{2}
\end{equation*}
$$

Lemma 2. If $f \in C[a, b]$, and C is a real number, then
(a) $\|f\|^{*}=0$ if and only if $f(x)=0$ for all $x \in[a, b]$,
(b) $\|C f\|^{*}=|C|^{p}\|f\|^{*}$,
(c) $\|\cdot\|^{*}$ does not satisfy the triangle inequality:

Proof. (a) and (b) are clear from the definition of $\|^{*}$.
(c) Let $f>0, g>0$. By the definition $\|f\|^{*}=\int_{a}^{b} f^{r} d x,\|g\|^{*}=$ $\int_{a}^{h} g^{p} d x$ and $\|f+g\|^{*}=\int_{a}^{h}(f+g)^{p} d x$. Since $f^{p}+g^{\prime \prime}<(f+g)^{p}$, this yields $\left\|f^{*}+\right\| g\left\|^{*}<\right\| f+g \|^{*}$.

Lfmma 3. If $I \in X$, and $t>0$ is sufficiently small, then
(a) $I, I^{+} \in Z(f) \cup\{a, b\}$, where $Z(f)=\{x \in[a, b]: f(x)=0\}$,
(b) $f(I \quad+t) f(I-t) \leqslant 0, f\left(I^{+}-t\right) f\left(I^{+}+t\right) \leqslant 0$,
(c) $S_{f}(I) f(I+t) \geqslant 0, S_{f}(I) f\left(I^{+}-t\right) \geqslant 0$.

For the proof of (a) see [2, Lemma 1], and the rest is similar, too.

Lemma 4. Assume that $f, f_{m} \in C[a, b], m=1,2, \ldots$ and f_{m} tends $10 f$. aniformly on $[a, b]$. Then

$$
\begin{equation*}
\left|f^{\prime}\right|^{*}=\lim _{m}\left|f_{m}\right|^{*} \tag{3}
\end{equation*}
$$

Proof. At first, according to the Lebesgue Dominated Convergence Theorem, it follows that

$$
\begin{equation*}
\lim _{m} f_{m}(I)=f(I), \quad \forall I \in X \tag{4}
\end{equation*}
$$

Next, it is easy to check that

$$
\max _{I \in X}\left|f_{m}(I)\right|-\max _{I \in X}|f(I)| \leqslant \max _{f \in x}\left[\left|f_{m}(I)\right|-|f(I)|\right] .
$$

Consequently from the property of the $\overline{\mathrm{lim}}$. the hypothesis of $f_{m} \rightarrow f$ and (4), we obtain that

$$
\begin{equation*}
\overline{\lim _{m}}\left[\max _{I, x}\left|f_{m}(I)\right|-\max _{I \leqslant x}|f(I)|\right] \leqslant \lim _{m} \max _{I \in x}\left[\left|f_{m}(I)\right|-|f(I)|\right]=0 \tag{5}
\end{equation*}
$$

Similary from

$$
\max _{I A}\left|f_{m}(I)\right|-\max _{I \in X}|f(I)| \geqslant \min _{I \in X}\left[\left|f_{m}(I)\right|-|f(I)|\right],
$$

it follows that

$$
\begin{equation*}
\underline{\lim }\left[\max _{l \rightarrow x}\left|f_{m}(I)\right|-\max _{I \in X}|f(I)|\right] \geqslant \lim _{m \rightarrow,} \min _{l \in x}\left[\left|f_{m}(I)\right|-|f(I)|\right]=0 . \tag{6}
\end{equation*}
$$

Combining (5) and (6) gives the result.

3. Existence

Theorfm 1. Let $f \in \mathcal{C}[a, b]$. There exists a $u \in G=\operatorname{span}^{\{ }\left\{g_{1}, \ldots, g_{n}\right.$ for which

$$
\inf _{v \in ;}\|f-v\|^{*}=\|f-u\|^{*}
$$

 2. ..., let $u_{m}=\sum_{k=1}^{n} a_{k}^{(m)} g_{k} \not \equiv 0$ satisfy $\lim _{m},\left\|f-u_{m}\right\|^{*}=C$ and let $\mu_{m}=$ $\max \left\{\left|a_{k}^{(m)}\right|: 1 \leqslant k \leqslant n\right\}>0$. We first show that μ_{m} is a bounded sequence. If this is not the case, then there exists a subsequence, again denoted by μ_{m},

we may assume that, for $i=1,2, \ldots, \mu_{m_{i}}=\left|a_{k_{1}}^{\left(m_{i} \mid\right.}\right|$, with a fixed k_{0}, and that. for $k=1, \ldots, n, a_{k}^{\left(m_{i}\right)} / \mu_{m_{1}}$ converges, say, to $a_{k},\left|a_{k}\right| \leqslant 1$, and $\left|a_{k i j}\right|=1$. Set $v=\sum_{k=1}^{n} a_{k} g_{k}$ and $v_{m}=\mu_{m}{ }^{1}\left(f-u_{m}\right), m=1,2, \ldots$. Then c_{m} tends uniformly to $-v$ on $[a, b]$. Since $v \neq 0 .\|r\|^{*}>0$. By (3), we have $\lim _{i \rightarrow}, \mid a_{m} \|^{*}=$ $|n e|^{*}>0$. However.

$$
\lim _{i \rightarrow,}\left\|v_{m_{1}}\right\|^{*}=\lim _{i} \| \mu_{m_{1}}^{1}\left(f-u_{m_{i}}\left\|^{*}=\lim _{,} \mu_{m_{l}}^{p}\right\| f-u_{m_{t}} \|^{*}==0 .\right.
$$

This contradiction proves that μ_{m} is bounded.
Hence there are integers $1 \leqslant m_{1}<m_{2}<\ldots$ and reals $a_{1}, a_{2}, \ldots, a_{n}$ for which $\lim _{i \rightarrow,}, a_{k}^{\left(m_{k}\right)}=a_{k}, k=1, \ldots, n$. Thus $\lim _{i}, u_{m_{t}}=u=\sum_{k}^{n}, a_{k} g_{k}$ uniformly on $[a, b]$. By (3)

$$
\|f-u\|^{*}=\lim _{i \rightarrow}\left\|f-u_{m}\right\|^{*}=C
$$

The definition of C implies that

$$
\left.\inf _{t \in c_{c}}\|f-t\|^{*}=\| f-u\right\}^{*}
$$

4. Characterization

Dffinition 1. Let $f \neq 0$. An $I \in X_{t}^{\prime}$ is said to be a definite interval of f if there is no $J \subset I$ satisfying $f(J)=-f(I)$. The set of all definite intervals of f is denoted by $X_{\text {. }}$.

An $I \in X_{f}^{*}$ is said to be a maximal (resp. minimal) definite interval of f if there is no $J \supset I$ (resp. $J \subset I$) satisfying $J \in X_{f}^{*}$ and $J \neq I$. The set of all maximal (resp. minimal) definite intervals of f is denoted by $X_{f^{1 /}}^{1}$ (resp. $\left.X_{t}^{m}\right)$.

Definition 2. $\left\{I_{1}, \ldots, I_{m}\right\} \subset X\{0\}$ is said to be weakly increasing if
(a) $I_{i}<I_{i, 1}, I_{i}{ }^{\prime}<I_{i+1}^{+}, i=1, \ldots, m-1$.
(b) $I_{i}^{+}<I_{i+2}, i=1, \ldots, m-2$.

If I and J are nonempty subintervals of $[a, b] . I<J:=x<y$ for all $x \in I$ and $y \in J$.
$\left\{I_{1}, \ldots, I_{m}\right\} \subset X \backslash\{0\}$ is said to be increasing if $I_{1}<\cdots<I_{m}$.
A system of extended intervals I_{1}, \ldots, I_{m}, i.e., $I_{i} \in X$ or $I_{i}=\left\{x_{i}\right.$. $x \in[a, b]$, is said to be increasing if $I_{1}<\cdots<I_{m}$.

Lemma 5 . (a) X_{f}^{*}, X_{f}^{4}, and X_{f}^{m} must exist.
(b) X_{f}^{M} is finite. Meanwhile $X_{1}^{M}=\left\{I_{1}\right\}_{1}$ with $I_{1} \leqslant \cdots \leqslant I_{1}$ is weakly increasing and satisfies $f\left(I_{i+1}\right)=-f\left(I_{i}\right), i=1, \ldots, N-1$.
(c) X_{t}^{m} is finite. Meanwhile $X_{i}^{m}=\left\{J_{i}^{\prime} 1_{1}^{v}\right.$ with $J_{1}<\cdots<J_{2}$ is increasing and satisfies $f\left(J_{i, 1}\right)=-f\left(J_{i}\right), i=1, \ldots, N-1$.
(d) Card $X_{1}^{\prime \prime}=$ Card X_{1}^{m}, denoted by N_{f}. Furthermore if $X_{i}^{M}=$ $\left\{I_{1}, \ldots, I_{N}\right\}$ and $X_{i}^{\prime \prime}=\left\{J_{1}, \ldots . J_{v_{i}}\right\}$ are weakly increasing, then $J_{i} \subset I_{i}$, $f\left(I_{i}, J_{i}\right)=0, i=1, \ldots, N_{1}$, and $J_{i}=\left(I_{i}^{\prime}, I, 1\right), i=2, \ldots, N_{1}, \cdots$.

The proof is similar to that of [2, Lemmas 47 and Theorems 24].
Lemma 6. Let $r, v \in C[a, b]$ and $I \in X$. Then

$$
\lim _{i=0} \frac{(r+i x)(I)-r(I)}{x}=p \int_{1} r|r|^{\prime \prime}
$$

Proof. By definition,

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{(r+i x)(I)-r(I)}{\lambda}=\lim _{0} \int_{0} \frac{(r+i r)|r+i x|^{n}-r|r|^{\prime}{ }^{1}}{i} . \tag{7}
\end{equation*}
$$

Set $\Phi(\lambda)=(r+\lambda)|r+\lambda|^{\prime}$ ' Clearly $\Phi(\lambda)$ is a continuous function of i and

$$
\begin{aligned}
\Phi^{\prime}(i) & = \begin{cases}\frac{d(r+i v)^{\prime}}{d i}=p u(r+i w)^{\prime \prime} & r+i x>0, \\
0, & r+i x=0, \\
\frac{d(-r-i v)^{\prime}}{d i}=p u(-r-i v)^{\prime \prime} & r+i v<0 .\end{cases} \\
& =p v|r+i u|^{\prime \prime} .
\end{aligned}
$$

Hence, there exists $\bar{\zeta},|\stackrel{\zeta}{c}|<|\lambda|$, satisfying

$$
\left.\left|\frac{\Phi(\lambda)-\Phi(0)}{\lambda}\right|=\left|\Phi^{\prime}(\xi)\right|=p c|r+\xi \cdot|^{p} \quad 1 \leqslant p|v|[|r|+|v|]^{\prime \prime} \quad \right\rvert\,
$$

for $|\lambda| \leqslant 1$. This implies that $[\Phi(\lambda)-\Phi(0)] / \%$ is dominated by $p|c|[|r|+|v|]^{r}{ }^{1}$. Thus according to the Lebesgue Dominated Convergence Theorem, we obtain that

$$
\begin{aligned}
& \lim _{i \rightarrow 0} \int_{1} \frac{(r+i v)|r+i x|^{p}{ }^{1}-r|r|^{p}{ }^{1}}{\lambda} \\
& =\int_{1,0} \frac{\left.(r+i v)|r+\lambda|^{p}\right|^{1}-r|r|^{\prime \prime}}{i} \\
& =\int_{1} \Phi^{\prime}(0)=\int_{1} p c|r|^{n} \quad \text {, }
\end{aligned}
$$

This combined with (7) completes the proof.

Theorem 2. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be an n-dimensional subspace of $C[a, b], f \in C[a, b] \backslash, u \in G, r=f-u, S(I):=S,(I)$. Then a necessary condition for u to be a best approximation to f from G is that there do not exist $v \in G$ such that

$$
\begin{equation*}
S(I) \int_{1} v|r|^{p} \quad 1>0, \quad \forall I \in X_{r} \tag{8}
\end{equation*}
$$

Proof. Suppose to the contrary that there is a $v \in G$ satisfying (8). At first for each $I \in X_{,}$, it follows from Lemma 6 that

$$
\lim _{i \rightarrow 0} \frac{S(I)(r+\lambda v)(I)-S(I) r(I)}{i}=p S(I) \int_{1} r|r|^{p} \quad 1>0 .
$$

Therefore $[S(I)(r+\lambda x)(I)-S(I) r(I)] / \lambda$ is a continuous function of λ and I and hence there exist sufficiently small positive numbers λ_{1}, and ε_{1}, such that

$$
[S(I)(r+\lambda c)(I)-S(I) r(I)] / \lambda>0
$$

and

$$
S_{r},(J)=S, \quad(I)=S(I)
$$

for all $0<\lambda<i_{1}$, and $J \in \mathcal{A}\left(I, \varepsilon_{1}\right)=\left\{J \in X:|J-I|+\left|J^{+}-I+\right| \leqslant \varepsilon_{1}\right\}$. Thus we have

$$
\begin{equation*}
|(r-i \cdot v)(J)|<S(I) r(J) \leqslant S(I) r(I)=\|r\|^{*}, \quad J \in A\left(I, z_{l}\right), 0<i \leqslant \lambda_{l} \tag{9}
\end{equation*}
$$

On the other hand, for each $I \notin X_{r}$, clearly $|r(I)|<\|r\|^{*}$. By the continuity of $(r-\lambda w)(I)$, there also exist sufficiently small positive numbers i_{I} and i_{I}, for which (9) does hold.

Sccondly, it is clear that the compact set X is covered by an open covering $U_{\text {icx }} A\left(I, \varepsilon_{I}\right)$. Hence we can collect a finite number of elements from the covering, denoted by $\left\{A\left(I_{i}, a_{i}\right)\right\}_{1}^{k}$, for which

$$
\bigcup_{i=1}^{k} A\left(I_{i}, \varepsilon_{1}\right) \supset X
$$

In other words, for each $I \in X$, there exists a $j, 1 \leqslant j \leqslant k$, such that $I \in A\left(I_{i}, z_{I_{i}}\right)$. Set $\bar{i}=\min \left\{\lambda_{I_{1}}, \ldots . \lambda_{I_{1}}\right\}$. Clearly $0<\bar{i} \leqslant \lambda_{I_{t}}$. From (9) we see immediately that, for all $0<\lambda \leqslant \bar{\lambda},|(r-\lambda x)(I)|<\|r\|^{*}$. This implies that, for all $0<\lambda \leqslant \bar{\lambda}$, we have

$$
\|r-\hat{\lambda} r\|^{*}<\|r\|^{*} .
$$

This contradicts the hypothesis that u is a best approximation to f.

In the following, we shall be concerned with particular n-dimensional subspaces of $C[a, b]$, called $Q T$-subspaces, considered by Y.-G. Shi [2]. for which we can obtain a complete characterization of best approximation.

Definition 3. A system of functions $\left\{g_{1}, \ldots, g_{n}\right\} \subset C[a, h]$ is said to be a quasi-Chebyshev system on $[a, b]$ (or a $Q T$-system) and an n-dimensional subspace $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ a $Q T$-subspace if

$$
D\left(I_{1}, \ldots . I_{n}\right):=\operatorname{det}\left|\int_{I_{1}} g_{j} d x\right|_{i, j-1}^{n} \neq 0,
$$

whenever $\left\{I_{i}\right\}_{1}^{n} \subset X$ is increasing.
The following equivalent properties of a $Q T$-system are from [2, Theorem 6].

Theorem 3. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\} \subset C[a, b]$. Then the following statements are equivalent:
(a) $\left\{g_{1}, \ldots, g_{n}\right\}$ is a QT-spstem.
(b) For any weakly increasing intervals $I_{1}, \ldots, I_{n}, D\left(I_{1}, \ldots, I_{n}\right) \neq 0$.
(c) $\left\{g_{1}, \ldots, g_{n}\right\}$ is a nondegeneracy weak Chebyshev system on $[a, b]$ (see [3]).

Before describing our result, let us note

Lemma 7. Let $r, v \in C[a, b],\left\{I_{i}\right\}=X$ he weakly increasing and $e=1$ or - 1, fixed. Suppose

$$
(-1)^{i} e \int_{L_{i}} v|r|^{p} \quad \geqslant 0, \quad i=1, \ldots, m .
$$

Then
(a) There exist m intervals $J_{1}, \ldots, J_{m}, J_{1}<\cdots<J_{m}$, such that

$$
(-1)^{i} e \int_{J_{i}} v|r|^{p} \geqslant 0, \quad i=1, \ldots, m .
$$

Furthermore, if $v(x) \not \equiv 0$ on any nontrivial interval $r(x) \not \equiv 0$ on each $I_{i},\left\{J_{i}\right\}_{1}^{\prime m}$ may be chosen so that

$$
(-1)^{i} e \int_{y_{1}} v|r|^{p}>0, \quad i=1, \ldots, m
$$

(b) If $m>1$, there exist $m-1$ intervals $K_{1}, \ldots, K_{m-1}, K_{1}<\cdots<$ K_{m}, such that

$$
\int_{K} v|r|^{p} \quad 1=0, \quad i=1, \ldots, m-1 .
$$

In addition, if $v(x) \not \equiv 0$ on any nontrivial interval and $r(x) \neq 0$ on each I_{i}, then $\left\{K_{i}\right\}_{1}^{\prime \prime} \quad, K_{1}<\cdots<K_{m} \quad$, may be chosen so that

$$
\int_{K_{i}} l|r|^{p-1}=0, \quad i=1, \ldots, m-1
$$

and $r(x) \not \equiv 0$ on each K_{i}.
The proof is similar to that of [2, Lemma 8].
Lemma 8. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be an n-dimensional $Q T$-subspace of $C[a, b],\left\{I_{i}\right\}_{1}^{n} \subset X$ be weakly increasing. If $v \in G, r \in C[a, b]$ are such that $r(x) \not \equiv 0$ on each I_{i}, and $\int_{I_{i}} v|r|^{p}{ }^{1}=0, i=1, \ldots, n$, then $v=0$.

Proof. Suppose to the contrary that $v \neq 0$ and the conditions of the lemma hold. Take x, $\max \left\{I_{n}, I_{n}^{+},\right\}<x<I_{n}^{+}$, and denote $J_{n}=\left(I_{n}, x\right)$, $J_{n+1}=\left(x, I_{n}^{+}\right)$, and $J_{i}=I_{i}$, for $i=1, \ldots, n-1$. We see that J_{1}, \ldots, J_{n+1} are also weakly increasing, $r(x) \not \equiv 0$ on each J_{i}, and $(-1)^{i}$ e $\int_{J_{i}} v|r|^{p}{ }^{1} \geqslant 0$, $i=1, \ldots, n+1$, where $e=1$ or -1 , fixed. By Theorem $3,\left\{g_{1}, \ldots, g_{n}\right\}$ is a nondegeneracy $W T$-system, hence v does not identically vanish on any nontrivial interval. By Lemma 7 , there exist $\left\{K_{i}\right\}_{1}^{n} \subset X, K_{1}<\cdots<K_{n}$, such that $r(x) \not \equiv 0$ on each K_{i} and $\int_{K_{i}} v|r|^{p}=0$, for $i=1, \ldots, n$. This implies that v has at least one sign change on each K_{i}. Thus v has totally at least n sign changes. This is impossible because of G being a $W T$-subspace, which ends the proof.

Corollary 1. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be an n-dimensional $Q T$ subspace of $C[a, b]$. Let $\left\{I_{i}\right\}_{1}^{n+1} \subset X$ be weakly increasing and $e=1$ or -1 , fixed. Let $r \in C[a, b]$ and $r(x) \neq 0$ on each $I_{i}, i=1, \ldots, n+1$. If $v \in G$ satisfies

$$
(-1)^{i} e \int_{t_{i}} v|r|^{p-1} \geqslant 0, \quad i=1, \ldots, n+1
$$

then $v=0$.

Corollary 2. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be an n-dimensional $Q T$ subspace of $C[a, b]$. Let $\left\{I_{i}\right\}_{1}^{n} \in X$ be increasing and $r \in C[a, b] \backslash\{0\}$. Then there exists a nonzero polynomial $v \in G$ such that
(a) $\int_{i_{i}} v|r|^{p}=0, \quad i=1, \ldots, n-1$.
(b) t changes sign one time on each $I_{i}, i=1, \ldots, n$ and has no sign change in each $\left(I_{i}^{+}, I_{i}, 1\right), i=0,1, \ldots, n-1$, where $I_{0}=a_{1} I_{n}=b$.

Proof. Suppose r do not identically vanish on m intervals of $\left\{I_{i}\right\}_{1}^{n}$, $1 \leqslant m \leqslant n-1$, denoted by $\left\{J_{i}\right\}_{1}^{m}$, and the rest by $\left\{J_{1}\right\}_{m 1}^{\prime \prime}$, Notc the following linear equations

$$
\begin{align*}
\sum_{i}^{n} c_{i} \int_{f_{t}} g_{j}|r|^{p} \quad=0, & i=1, \ldots, m \tag{10}\\
\sum_{i=1}^{n} c_{j} \int_{j} g_{i}=0, & i=m+1, \ldots, n-1
\end{align*}
$$

Since $\left\{g_{1}, \ldots, g_{n}\right\}$ is a $Q T$-system, it follows by using the theory of linear equations that (10) has a nonzero solution $c_{j}, j=1, \ldots, n$. Set $v=\sum_{j=1}^{n} c_{j} g_{j}$. It is easy to check that

$$
\begin{align*}
\int_{J_{i}} v|r|^{\prime \prime} & =0, \quad i=1, \ldots, m, \tag{11}\\
\int_{J_{1}} v=0, & i=m+1, \ldots, n-1 .
\end{align*}
$$

Consequently, according to the above notation and the fact G is a nondegeneracy $W T$-subspace, we conclude from (11) that v satisfies (a) and (b).

Lemma 9. Let ${ }^{\text {' } G}=\operatorname{span}\left\{g_{1}, \ldots, g_{n}^{\prime} ;\right.$ be an n-dimensional QT-subspace of $C[a, b], r \in \mathbb{C}[a, b]$. Let a system of extended intervals $\left\{I_{i}\right\}=\left\{I_{j}^{\prime}\right\} \cup\left\{x_{k}\right\}$ be increasing where $\left\{I_{j}\right\} \subset X$ and $\left\{x_{k}\right\} \subset(a, b)$. Suppose $m<n$. Then there exists a nonzero polynomial $v \in G$ such that
(a) $\int_{I_{t}} v|r|^{p} \quad 1=0, i=1, \ldots, m$.
(b) I changes sign on each $I_{i}, i=1, \ldots, m$. (If $I_{i}=x_{k}$, this means that 0 changes sign at x_{k}.)

Proof. Put for $t>0$ sufficiently small

$$
J_{i}=\left\{\begin{array}{l}
(h-(n-i) t, h-(n-i-1) t), \quad i=m+1, \ldots, n-1 \text { if } m<n-1 \\
\left(x_{i}-t, x_{i}+t\right) \quad \text { if } I_{i} \in\left\{x_{k}\right\} \\
I_{i},(\cup[h-(n-i) t, b-(n-i-1) t]) \\
\left.\cup\left(\cup\left[x_{i}-t, x_{i}+t\right]\right)\right\} \quad \text { if } I_{i} \in\left\{I_{j}^{\prime}\right\} .
\end{array}\right.
$$

We see that $\left\{J_{i}\right\}$ is also increasing if $t>0$ is sufficiently small. By Corollary 2, there exists a nonzero polynomial $v, \in G$ such that
$\int_{, i} r,|r|^{\prime}=0, i=1, \ldots, n-1, \quad l$, changes sign one time on each J_{i}. $i=1, \ldots, n-1$, and has no sign change in each interval $\left(J_{i}^{\dagger}, J_{i+1}^{-}\right), i=0$, $1, \ldots, n-1$, where $J_{0}^{+}=a, J_{n}^{-}=b$. The polynomial v, can be assumed normalized in the sense that $\left\|v_{t}\right\|^{*}=1$. Letting $t \rightarrow 0$, we select a limit polynomial $v \in G$ satisfying $\left.\left.\int_{I_{i}} v\right|^{n}\right|^{1}=0, i=1, \ldots, m$, and for which v has no sign change in each interval $\left(I_{i}^{\prime}, I_{i+1}\right), i=0,1, \ldots, m$, where $I_{0}^{+}=a$, $I_{n}=h$. It is not difficult to check that i changes sign on each $I_{i}, i=1, \ldots, m$, and has exactly m sign changes. This completes the proof.

We now state our main result.

Theorem 4. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be an n-dimensional $Q T$-subspace of $C[a, b], f \in C[a, b] \backslash, u \in G, r=f-u$ and $S(I):=S,(I)$. Then the following statements are equitalent.
(a) u is a best approximation to from G.
(b) There does not exist a $v \in G$ such that

$$
S(I) \int_{1} r|r|^{\prime \prime} \quad 1>0, \quad \forall I \in X_{r} .
$$

(c) The origin of n space lies in the convex hull of the set $\{S(I) \hat{I}$: $I \in X_{r}$;, where $\hat{I}=\left(\int_{I} g_{1}|r|^{p} \quad, \ldots, \int_{1} g_{n}|r|^{p}{ }^{1}\right)$.
(d) $\max _{I \in x} S(I) \int_{1} v|r|^{p} \quad{ }^{1} \geqslant 0, \forall v \in G$.
(e) $\max _{1 \in x_{r}} S(I) \int_{1} v|r|^{p}{ }^{1}>0, \forall v \in G \backslash\{0\}$.
(f) $\quad N_{r} \geqslant n+1$.

Proof. Theorem 2 has shown that $(a) \Rightarrow(b)$, and $(b) \Leftrightarrow(c) \Leftrightarrow(d)$ is clear by means of well-known arguments. We now show the other equivalences. Denote $N=N_{r}$ and $X_{r}^{m}=\left\{I_{1}, \ldots, I_{N}\right\}$ with $I_{1}<\cdots<I_{N}$. Clearly, $r(x) \not \equiv 0$ on each $I_{i}, i=1, \ldots, N$. Assume wihout loss of generality. that $S\left(I_{1}\right)>0$.
(b) \Rightarrow (f). Suppose on the contrary that $N \leqslant n$. Put

$$
K_{i}=\left\{\begin{array}{ll}
\left(I_{i}^{-}, I_{i+1}^{+}\right) & \text {if } \quad i=\text { odd } \\
\left(I_{i}^{+}, I_{i+1}^{-}\right) & \text {if } \quad i=\text { even and } I_{i}^{+}<I_{i+1} \\
I_{i}^{+} & \text {if } \quad i=\text { even and } I_{i}^{+}=I_{i+1} .
\end{array} \quad(i=1, \ldots, N-1) .\right.
$$

Obviously the system of extended intervals $\left\{K_{i}\right\}_{1}^{N 1}$ is increasing. By Lemma 9, there is a nonzero polynomial $v \in G$ such that $\int_{\kappa_{i}} v|r|^{p}{ }^{\prime}=0$, $i=1, \ldots, N-1$, c changes sign on each $K_{i}, i=1, \ldots, N-1$, and v has exactly $N-1$ sign changes on $[a, b]$. We assume that $\int_{L_{1}} v|r|^{p-1}>0$ (taking $-v$ instead of v if necessary $)$. Denote $K_{0}=\left(a, K_{1}\right), K_{*}=\left(K_{*}^{+} \quad, b\right)$.

Assertion.

$$
\begin{align*}
& (-1)^{i+1} \int_{K,}^{\prime} r| |^{\prime \prime} \quad 1 \geqslant 0, \quad x \in \bar{K}_{i}, i>0 \tag{12}\\
& (-1)^{i+1} \int_{x}^{K,} r|r|^{p} \quad \leqslant 0, \quad x \in \bar{K}_{i}, i<N \tag{13}
\end{align*}
$$

where $\bar{K}_{i}=\left[K, K_{i}{ }^{+}\right]$.
Proof. If $K_{i}=\left\{x_{k}\right\}$, clearly, the equality in (12) and (13) holds. In the following we assume K, is a nontrivial interval.

Case (i). $0<i<N$. In this case it follows from $\int_{\kappa_{i}} l|r|^{p}{ }^{\prime}=0$ that $\int_{K_{t}}^{v} v|r|^{p}=-\int_{x_{i}}^{K_{i}^{\prime}} v|r|^{p} \quad$. Since $\int_{I_{1}} v|r|^{\prime \prime}>0$ and t has exactly one sign change on K_{i}, we see immediately that

$$
\begin{align*}
& (-1)^{i+1} \int_{k_{i}}^{r} v|r|^{p} \geqslant 0 \\
& (-1)^{i+1} \int_{x}^{k_{i}^{\prime}} v|r|^{p} \quad 1 \leqslant 0 \tag{14}
\end{align*}
$$

Case (ii). $i=0$. Since v changes sign once in ($K_{0}, K_{1}{ }^{1}$), and that only in $\left(K_{1}, K_{1}{ }^{+}\right)$, it follows from the assumption of $\int_{\Lambda_{1}} r|r|^{r}{ }^{1}>0$ that $\int_{x}^{\mathcal{K}_{0}{ }^{+}} v|r|^{p} \quad 1 \geqslant 0$, where $x \in \bar{K}_{(0)}$.

Case (iii). $i=N$. Applying the second inequality of (14) to the case $i=N-1$, we get that

$$
\begin{equation*}
(-1)^{x} \int_{x}^{\kappa i} \quad{ }_{x}|r|^{p} \quad 1 \leqslant 0, \quad x \in \bar{K}_{x} \quad . \tag{15}
\end{equation*}
$$

Next note that r changes sign once in $\left(K_{N}, K_{N}^{+}\right)$, and that only in $\left(\begin{array}{l}K_{\sim} \\ 1\end{array}, K_{+}^{+} \quad 1\right)$. Hence from (15) it is easy to infer that

$$
(-1)^{N+1} \int_{K_{N}}^{x} v|r|^{p} \geqslant 0, \quad x \in \tilde{K}_{N} .
$$

Now let $I \in X$, be arbitrary. Then I must contain an odd number of I_{i} 's, say $I \supset\left(I_{i} \cup \cdots \cup I_{j+2 k}\right)$, where $j \geqslant 1, j+2 k \leqslant N, k \geqslant 0$. Thus $I \supset\left(K_{i} \cup \cdots \cup K_{i+2 k}, 1\right)$. Letting $L=\left(I, K_{i}^{\prime}{ }_{1}\right)$ and $R=\left(K_{i+2 k}, I^{i}\right)$, we have that

$$
\begin{align*}
\int_{t} v|r|^{p} & =\int_{L} v|r|^{p 1}+\sum_{i=1}^{i+2 k} 1 \int_{k_{i}} v|r|^{p}+\int_{R} v|r|^{p} \quad \\
& =\int_{1} v|r|^{\prime \prime} \quad+\int_{R} v|r|^{p} \tag{16}
\end{align*}
$$

and

$$
\begin{array}{r}
(-1)^{j} \int_{l} v|r|^{p}{ }^{\prime} \leqslant 0 \tag{17}\\
(-1)^{j+2 k+1} \int_{R} v|r|^{p}{ }^{1} \geqslant 0
\end{array}
$$

because of (12) and (13).
On the other hand, by the definition of L and R, it follows that

$$
\begin{array}{ll}
L=\left(I, K_{j}^{+}{ }_{1}\right) \supset I_{j} & \text { if } j=\text { even, } \\
R=\left(K_{j+2 k}, I^{+}\right) \supset I_{i+2 k} & \text { if } j=\text { odd } \tag{19}
\end{array}
$$

Clearly, either (18) or (19) must occur. Then along with the condition that $r(x) \not \equiv 0$ on each $I_{i}, i=1, \ldots, N$, we assert that r does not identically vanish on at least one of L and R. Thus at least one of the strict inequalities in (17) must hold. This combined with (16) and (17) gives that

$$
(-1)^{j+1} \int_{t} v|r|^{p-1}>0
$$

Next by the assumption of $S\left(I_{1}\right)>0$, we get that $S(I)=S\left(I_{i}\right)=$ $(-1)^{i+1} S\left(I_{1}\right)=(-1)^{j+1}$ and whence $S(I) \int_{1} v|r|^{p}>0$, contradicting (b).
(f) \Rightarrow (e). If not, let $v \in G\{0\}$ satisfy $\max _{t \in X_{t}} S(I) \int_{I} v \mid r^{p}{ }^{1} \leqslant 0$. Then $\max _{l e x_{r}^{m}} S(I) \int_{1} v|r|^{p} \quad 1 \leqslant 0 \quad$ or $\quad S\left(I_{i}\right) \int_{I_{i}} v|r|^{p-1} \leqslant 0, \quad i=1, \ldots, N$. Since $S\left(I_{i}\right)=(-1)^{i+1} S\left(I_{1}\right),(-1)^{i} S\left(I_{1}\right) \int_{I_{i}} v|r|^{p-1} \geqslant 0, i=1, \ldots, N$. Then because of $r(x) \not \equiv 0$ on each $I_{i}, i=1, \ldots, N$, it follows from Corollary 1 that $r=0$, a contradiction.
$(\mathrm{e}) \Rightarrow(\mathrm{d})$. It is trivial to verify.
$(\mathrm{f}) \Rightarrow(\mathrm{a})$. Suppose on the contrary that there exists a $v \in G \backslash 0\}$ such that $\|r-r\|^{*} \leqslant\|r\|^{*}$. Whence for $\left\{I_{i}\right\}_{1}^{N}$,

$$
S\left(I_{j}\right) \int_{L_{1}}(r-v)|r-v|^{p} \quad 1<S\left(I_{i}\right) \int_{L_{1}} r|r|^{n} \quad 1 . \quad j=1, \ldots, N .
$$

This implies that for each $j, 1 \leqslant j \leqslant N$. there exists a point $x_{j}, x_{j} \in I_{i}$, such that

$$
\begin{equation*}
S\left(I_{j}\right)(r-v)\left(x_{j}\right)<S\left(I_{j}\right) r\left(x_{j}\right), \quad j=1, \ldots, N . \tag{20}
\end{equation*}
$$

From (20) it is easy to conclude that $v \neq 0$ has at least n sign changes, which contradicts the fact that G is also a $W T$-subspace. This completes the proof.

We now provide an analogue of a fundamental result of de La Vallée Poussin.

Theorem 5. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be an $n-$ dimensional QT-subspace of $C[a, h]$. Let $r \in G$ satisfy

$$
(-1)^{i} e \int_{t}(f-r)|f-i|^{p} \geqslant 0 . \quad i=1, \ldots, n+1
$$

where $\left\{I_{i}\right\}_{1}^{n+1} \subset X, I_{1}<\cdots<I_{n}, 1$ and $c=1$ or -1 , fixed. Then

$$
\inf _{u, c}\|f-u\|^{*} \geqslant \min _{1,1, n: 1}\left|\int_{L}(f-v)\right| f-\left.v\right|^{n} \mid
$$

The equality can occur if and only if r is a best approximation to f and $\left\{I_{i}\right\} \subset X_{1} \ldots$.

Proof. Letting $u \in G$ be a best approximation to $f, \mid f-u \|^{*} \leqslant$ $\min _{1, \ldots n+1}\left|f_{t}(f-t)\right| f-\left.m\right|^{\prime \prime}$ implies that

$$
\int_{l}(f-u)|f-u|^{n} \quad\left|\leqslant \min _{1 \leqslant i \leqslant n+1}\right| \int_{i}(f-n)|f-n|^{\prime \prime} \quad 1 \mid . \quad j=1, \ldots, n+1 .
$$

If for every, $i, 1 \leqslant i \leqslant n+1$, there exists a point $x_{i}, x_{i} \in I_{i}$, for which

$$
(-1)^{\prime} e(f-u)\left(x_{j}\right)<(-1)^{\prime} e\left(f-r n\left(x_{i}\right) . \quad i=1, \ldots, n+1\right.
$$

then it is not difficult to see that this is impossible by using the fact that G is a $W T$-subspace. Therefore there must exist a $j, j \in\{1, \ldots, n+1\}$, such that

$$
(-1)^{\prime} c(f-u)(x)=(-1)^{i} c(f-v)(x) \quad \text { for all } \quad x \in I_{i} .
$$

This combined with the fact again that (B is a nondegeneracy $W T$-subspace yields that $r=u$ and of course, $\left\{I_{i}\right\} \subset X_{,}$, Conversely, if r is a best approximation to f and $\left\{I_{i}\right\} \subset X_{i}$, then equality occurs.

5. Uniqueness

Theorfm 6. Let u be a best approximation from G to $f \in C[a, b]$. If G is a QT-subspace of $C[a, b]$, then u is unique.

Proof. If $f \in G$, then $u=f$ is unique. Now suppose $f \notin G$. If possible, let $v \in G$ be another best approximation. Then for $X_{i}^{\prime \prime \prime}{ }_{u}=\left\{I_{i}\right\}_{1}^{n}{ }^{n}$, $I_{1}<\cdots<I_{\mathrm{v}}$, , we have

$$
(-1)^{\prime} c \int_{4}(f-u)|f-u|^{p} \quad 1>0
$$

where $e=-S_{j} \quad,\left(I_{1}\right)$ and

$$
\left|f-v\left\|^{*}=\right\| f-u\right|^{*}=\min \left\{| |_{f^{\prime}}(f-u)|f-u|^{p} \quad \mid: 1 \leqslant i \leqslant N_{f} \quad u\right\}
$$

As in the proof of Theorem 5 we assert $u=r$.

Lemma 10. Let G be an n-dimensional subspace of $C[a, b]$. Then there exists a positive number C such that

$$
\begin{equation*}
\|v\|^{*} \geqslant C \mid v \|^{\prime \prime}, \quad \forall t \in G . \tag{21}
\end{equation*}
$$

Proof. If $t=0,(21)$ is trivial. Otherwise, set

$$
C=\inf _{r \in G ; 0:} \frac{\|r\|^{*}}{\|v\|^{\prime}}
$$

we shall prove that $C>0$. Suppose $C=0$, then there exists a sequence $v_{k} \in G \bigcup\{0\}$ such that

$$
\frac{\left\|v_{k}\right\|^{*}}{\left\|v_{k}\right\|^{\prime \prime}} \rightarrow 0 . \quad k \rightarrow \infty
$$

This means that for $u_{k}=v_{k} /\left\|v_{k}\right\|$, we have $\left.\| u_{k}\right\},=1$ and $\left\|u_{k}\right\|^{*} \rightarrow 0$, $k \rightarrow \infty$. Suppose without loss of generality that $u_{k} \rightarrow v$. Then $\|r\|,=1$ and by (3)

$$
\|v\|^{*}=\lim _{k \rightarrow,}\left\|u_{k}\right\|^{*}=0
$$

a contradiction.
Remark. This conclusion still holds if we take $G-f=\{t-f: v \in G\}$ instead of G.

With this conclusion we now present the strong uniqueness theorem.

ThForem 7. Let $G=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$ be a $Q T$-subspace, $u \in G$ is a best approximation to f. Then there exists a constant $;>0$ depending only on f such that for any $v \in G$

$$
\left\|f-\left.v\right|^{*} \geqslant \mid f-u\right\|^{*}+i\|u-v\|^{4},
$$

where $1 \leqslant q \leqslant p$.
Proof. If $f \in G$, it is trivial. Thus we assume $f \notin G$.

For any $r \neq u$, set

$$
\gamma(v)=\frac{\left\|f^{\prime}-v\right\|^{*}-\left\|f^{\prime}-u\right\|^{*}}{\|u-v\|^{4}} .
$$

We shall prove that $\gamma(v)$ has a positive lower bound. If this is not the case, then there exists a sequence $c_{k} \in G$, with $c_{k} \neq u, k=1,2, \ldots$, such that

$$
\because\left(v_{k}\right)=\frac{\left\|f-v_{h}\right\|^{*}-\|f-u\|^{*}}{\left\|u-t_{k}\right\|^{4}} \rightarrow 0, \quad k \rightarrow x_{k}
$$

We first prove that $\left\|u-v_{k}\right\|^{4}$, is a uniformly bounded sequence. In fact, if $\left\|u-v_{k}\right\|^{4}, \rightarrow x, k \rightarrow \infty$, it follows from $\left\|f-v_{k}\right\|^{4}, \rightarrow \infty$ and $\| f-\left.v_{k}\right|^{*} \geqslant$ $C\left\|f-v_{k}\right\|^{\prime \prime} \geqslant C\left\|f-v_{k}\right\|^{4}$, that

$$
\underline{\lim }_{k,} \gamma^{\prime}\left(v_{k}\right) \geqslant \underline{\lim }_{k \rightarrow} \frac{C\left\|f-v_{k}\right\|_{k}^{4}-\mid f-u \|^{*}}{\left\|u-v_{k}\right\|^{4}} \geqslant C .
$$

This contradiction proves that $\left\|u-v_{k}\right\|^{4}$, is bounded. Hence there is a positive constant M, for which $\left\|u-v_{k}\right\|^{\prime \prime}, \leqslant M, k=1,2, \ldots$. Without loss of generality assume that c_{k} converges uniformly to b, then it remains to check that v satisfies $\|u-v\|^{\prime \prime}, \leqslant M, v \in G$, and $\gamma^{\prime}(v)=0$. Consequently applying Theorem 6 we obtain $v=u$.
 $C>0$ from (e) of Theorem 4. Set $r=f-u, S_{r}(I)=S(I)$, and $v_{k}=u-\alpha_{k}$, where $\alpha_{k} \in G$ and α_{k} converges uniformly to 0 since v_{k} converges uniformly to $v=u$. Similar to the proof of Lemma 6 , we can conclude that

$$
\lim _{x_{k}(x)=0} \frac{\left[\left(r+\alpha_{k}\right)\left|r+\alpha_{k}\right|^{p} \quad 1\right](x)-\left[r|r|^{p} \quad 1\right](x)}{x_{k}(x)}=\left[p|r|^{p, 1}\right](x)
$$

for any $x \in[a, b]$.
Hence from the fact $\left|\alpha_{k} /\left\|\alpha_{k}\right\|,\right| \leqslant 1$ we have

$$
\begin{equation*}
\lim _{x_{k} \rightarrow 0} \Psi\left(\alpha_{k}\right)=\lim _{x_{k} \rightarrow 0} \int_{1} \frac{\alpha_{k}}{\left\|\alpha_{k}\right\|}\left[\frac{\left(r+\alpha_{k}\right)\left|r+\alpha_{k}\right|^{\prime \prime}{ }^{1}-r|r|^{p}}{\alpha_{k}}-p|r|^{n} \quad 1\right]=0 \tag{22}
\end{equation*}
$$

by using Lebesgue convergence Theorem.
Taking any $I \in X$, for which

$$
p S(I) \int_{l} \frac{\alpha_{k}}{\left\|\alpha_{k}\right\|}|r|^{p} \geqslant C .
$$

We calculate

$$
\begin{aligned}
\gamma^{\prime}\left(v_{k}\right) & \geqslant \frac{S(I) \int_{1}\left(r+\alpha_{k}\right)\left|r+\alpha_{k}\right|^{\prime \prime}-S(I) \int_{r} r|r|^{\prime \prime}}{\left\|\alpha_{k}\right\|^{\prime \prime}} \\
& =\left\|\alpha_{k}\right\|^{\prime}, "\left[S(I) \bar{\Psi}\left(\alpha_{k}\right)+p S(I)\left[\frac{\alpha_{k}}{\left\|\alpha_{k}\right\|}|r|^{\prime \prime}\right]\right. \\
& \geqslant\left\|\alpha_{k}\right\|^{\prime}, "\left[S(I) \bar{\Psi}\left(\alpha_{k}\right)+C\right] .
\end{aligned}
$$

By (22).

$$
\gamma(v)=\lim _{k \rightarrow,} \gamma\left(v_{k}\right)=\left\{\begin{array}{lll}
C & \text { if } & q=1 \\
\infty & \text { if } & 1<q \leqslant p
\end{array}\right.
$$

a contradiction. This complete the proof.

Acknowledgmęnt

I am greatly indebted to Professor Y.-G. Shi for his enthusiastic guidance and help in this work.

Rfferences

1. A. Pinkus and O. Shisifa, Variation on the Chebyshev and I^{4} theories of best approximation, J. Approx. Theory 35 (1982), 148-168.
2. Y.-G. SHI, The Chebyshev theory of a variation of I. approximation. submitted for publication.
3. D. Zwack. Degeneracy in W'T-Spaces, J. Appon. Theory 41 (1984). 100-113.
