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In this paper. we study a variation of best /., approximation obtained by using
a new “norm.” We consider the questions of existence and uniqueness and also
prove analogues of the essentials of the classical theory of best uniform approxima-
tion: characterization (Theorem 4). de La Vallée Poussin’s bound (Thecorem 5). and
strong uniqueness (Theorem 7). ¢ 1990 Academic Press, Tne

1. INTRODUCTION

After Pinkus and Shisha [1] proposed a new method of approximation
using L ,-type “norms” (gauges), Y.-G. Shi [2] introduced another method
of approximation in the case p = 1. This method maintains many essentials
of the classical theory of best uniform approximation and has a distinct
advantage over the corresponding one for L, best approximation, in that
the unique best approximation is characterized by a remarkable geometric
property. In this paper, we propose another L -type measure |-|I*
(1< p<oo)in terms of the technique of [2] in order to study the same
questions of existence, uniqueness and characterization. In the special case
p=1, the measure ||-|'* is the norm ||| defined in [2].

2. PRELIMINARIES

Let C[a, b] be the class of real-valued functions continuous on [a, b ].
For fe Clu, b] and 1 < p < ., we definc

:uscgclgb}. (H

add
/1% =sup ﬂ | FLA Ndx
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Let G be an n-dimensional subspace of C[a, b]. We consider the following
problem: For a given /€ C[a, h], find a ue G such that

| =ull* = inf 7 =]
e Gy

Such a polynomial u (if any) is said to bc a best approximation to f
from G.

Now we introduce the basic notations and definitions. Denote X :=
H=(c.d): Ic[a b1} We adopt the convention that X contains the
unique “zero” element 0= (¢, ¢). If 7= (¢, d)e X* {0}, we write I = ¢ and
I~ =d. In the following, we always assume that f'e C[a, b]. For ease of
notatlon we set f(/): j,f 17 dx, Xpe=lle X | A= f]*]. and

S, (1) :=sgn f(I). With these notations (1) can be rewritten as

1A% = sup [ A(1)].

ey

LemMma 1. (a) X is a compact set, f(I) is a continuous function of 1.
(b) |/1*=max, /()
() AF<ifr<th=—ay /i’ .

The proof is easy and is omitted.

Let f. /,,eCla, b], m=1, 2, .., and let f,, converge to f. uniformly on
[a,b]. From (c) of Lemma | it casily follows that

lim [f,—fII*=0. (2)

- s

LeMMmA 2. If feCla, b, and C is a real number, then
(a) N/ 1*=0if and only if f(x)=0 for all xe[a, b],
(b) CfI*=[C1" LA,
() |-[I* does not satisfv the triangle inequality.
Proof. (a) and (b) are clear from the definition of | [*.
() Let />0, g>0. By the definition |/f|*={"/"dx, |lg|*=
{7 g7 dx and |/ + gll*=[’(/+ g)"dx. Since 7+ ¢g" < (f+ g)”, this yields
S gl <L+ gl
Lemma 3. If e X, and 1 >0 is sufficiently small, then

(a) I It eZ(fyula b}, where Z(f)={xe[a, b]: f(x)=
(b) fLI +nfUd —n<0, fUI" —n/UT+1)<0,
(c) S,(yfl +0=20,S(HfI"—0=0.

For the proof of (a) see [2, Lemma 1], and the rest is similar, too.

63062 1.7



96 MING FANG
Lemva 4. Assume that [, [, Cla,h], m=1, 2, ... and f,, tends 1o f,
uniformly on [a, b]. Then

[f1F = dime (3)

Mo s

Proof. At first, according to the Lebesgue Dominated Convergence
Theorem, 1t follows that

Next. it is casy to check that

max | £, (£)] —max | /()| <max [| 1,1} —[f(])|].
LAY Te X fe Y

Consequently from the property of the lim. the hypothesis of f,, — f and
t4). we obtain that

fim [max | f,,(/) —max | /(1) ]1< lim max [|£,,(D] = fU}]=0. (5)
A I i v

mos I+ mo> o« e

Similary from

max | 7, (7}l —max | /(7)| = min [| £, (D) =1 f()] ],
I e A Jey

it follows that

lim [rp_a\x )] ~ max /D112 lim min [{f,()] = /)] ]=0. (6)

o s nos s Je

Combining (5) and (6) gives the resuit.

3. EXISTENCE

THEOREM . Let f e Cla, b). There exists a ue G =spanlg,, .. g,} for
which

inf || f—eil*=f ui*
el

Proof. Set inf, . i f—r]*=C We may assume that ('>0. For m=1,
2. detw, =37 aleg, #0 satisly Iim,,, ,, [|f —uw,I*=C and let p,, =
max{|e"|: 1 <k <n} >0 We first show that u,, is a bounded sequence. If
this 1s not the case, then there exists a subsequence, again denoted by y,,,,

which tends to «. By choosing a suitable subsequence, denoted by {pu,, ],
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we may assume that, for i=1, 2. .., i, = [}, with a fixed k., and that,
for k=1.. al"u,, converges say, to ¢, lag| <1, and |a, |=1. Set
p=24_ dy g and cp=4, (f—u,).m=1,2, .. Thenr, tends uniformly
to —cvon [a b] Since v#0. [fe]*>0. By (3), we have lim, ., |, |* =
liel * > 0. However.

hm (e, 1% = Hm fig, O —w, %= lim g, ") f =, 1% =0.

s Joe s IR

This contradiction proves that j,, is bounded.

Hence there are integers ! <m; <m>< --- and reals «,. a>. ... u, for
which lim, ., ¢} =a,, k=1,..n Thus lim, , u, =u=%, | a, g

uniformly on [« b]. By (3)

lf—ul*=lm [ f—u,l|*=C

The definition of C implies that

inf ||/ —cl* =1/ —uk*

Uy r
4. CHARACTERIZATION

DermNiTiON 1. Let f#0. An 1€ X, 1s said to be a definite interval of f
if there 1s no J < 7 satisfying f(/)= —f(/). The sct of all definite intervals
of f1s denoted by X /*.

An le X[ is said to be a maximal (resp. minimal) definite interval of
if there is no Jo [ (resp. Jc ) satisfying Je X* and J# 1. The set of all
maximal (resp. minimal) definite intervals of / is denoted by X' (resp.
X7,

DEFINITION 2. ([, .. [, < X'\ 10} is said to be weakly increasing if
(ay I, <I,, .1 <I}

, Foei=hom— 1L
(by 1} <1

ips =10 m—2.

If / and J are nonempty subintervals of [u, h]. I<J :=x < yiorall vet
and reJ.

ys e ) < X0 {0} is said to be increasing if 7, < -+ <1,

A system of extended intervals 1,,../7,. ie. [,eX or [ = fx!
x€ [a. b]. is said to be increasing if 1, < --- </, .

LemMma S0 (a) X* XY, and X7 must exist.

(b)Y XY s finite. Meanwhile XM =11 with I, < - <[, i
weakly increasing and satisfies f(;, (V= — fUl,). i=1....N— 1.
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(¢) X[ s finite. Meanwhile X7 = |J |} with J, < - <J iy
increasing and satisfies f(J,, Y= —1J), i=1, .. N—1L

(d) Card X} =Card X', denoted by N,. Furthermore if X =
Whowady,) and X7 =130J, .. Jy} are weakly increasing. then J, <1,

FUN)=0i=1 . N,and J, =1, | 1, ). i=2...N, - 1.

The proof is similar to that of [2. Lemmas 4 7 and Theorems 2 47

LEMMA 6. Let v, veCla. b] and Te€ X. Then

_ {rae)d) ) . 7
llm —_— =] I U “",
Joe 0 /. Jy
Proof. By definition,
R 2 1V A U A T C a2 ) N e LA VY C ,
lim ——————————=lim | . : (7)
a0 A ;o0 I

Set @(4A)=(r+iv)|r+i0l” ' Clearly @(4) is a continuous function of £
and
dir+ +v)”

7 = pr(r+ Av)” 1 P> 0,
do.
@'(L)=< 0, F4ar =0,
d(—r—av)” S :
T pri-r—rr) 2 <0,
=pe|r+sel" N

Hence. there exists ¢ <] < |4]. satisfying
P(4)— P(0) . o
— | =R = el Gl < p e [l o))
for |4/ <1. This implies that [&(4)—@(0)]/~ is dominated by
plei [t +1el]7 ' Thus according to the Lebesguc Dominated
Convergence Theorem, we obtain that

B T TS B Ny O VS L
lim ' .
4 0y /.
B . i (r4ir)r+ael” —r e !
Jpaen /

=[ @)= prir”
Y1 41

This combined with (7) completes the proof.
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THEOREM 2. Let G=span|g,, ... g,} be an n-dimensional subspace of
Cla.b], feCla, b]\G, ueG, r={-—u, S(I):=S,1). Then a necessary
condition for u to be a best approximation to [ from G is that there do not
exist ve G such that

S |

v

cir)” '>0,  VIeX,. (8)

Proof.  Suppose to the contrary that there is a ve G satisfying (8). At
first for each Ie X, it follows from Lemma 6 that

SO+ ARy — Sy rD
lim .

;o0 /.

=pS() Jhl vlr” '>0.

Therefore [S(U)(r+ Ac)({)— S(I) r(1)]/4 is a continuous function of / and
[ and hence there exist sufficiently small positive numbers 4, and &, such
that

[S()r+ Ac))— S(1) r(1) ]2 >0

and

S, (=S, (I)=S(])

r ’

for all O</i<4, and JeA(Le)={JeX: |J —1 |+|J*—1"|<¢,}
Thus we have

W — 2N < SU rIV ST D =F1% JeAd e, 0<i<h,. (9)

On the other hand, for each [7¢JX,, clearly |r(I)| <|r[* By the
continuity of (r — Av)([), there also exist sufficiently small positive numbers
+;and &,, for which (9) does hold.

Secondly, it is clear that the compact set X is covered by an open
covering | J,. y A(L, ¢,). Hence we can collect a finite number of elements
from the covering, denoted by {A(1;, ¢,)}%. for which

A

U A4 e,) > X

i=1

In other words, for each /€ X, there exists a j, 1 < j<k, such that
Ie Al ¢,). Set ~=min{Z,. .4, Clearly 0<z</, From (9) we sec
immediately that, for all 0 <2< 4, [(r— Av){/)| <|lr|*. This implies that,
for all 0 < A</, we have

e — Al * < el

This contradicts the hypothesis that « is a best approximation to f.
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In the following, we shall be concerned with particular n-dimensional
subspaces of Cla, b], called QT-subspaces, considered by Y.-G. Shi [2].
for which we can obtain a complete characterization of best approximation.

DerINITION 3. A system of functions |g,. .., g,] < Cla.h] 1s said to
be a quasi-Chebyshev system on [a«.h] (or a QT-system) and an
n-dimensional subspace G =span{g,, .., g, a QT-subspace if

i‘ g dx # 0,

10

D(I,....1,):=det

ig=1
whenever {/;}} < X is increasing.

The following equivalent propertics of a Q7-system are {rom
[2. Theorem 6].

THEOREM 3. Let G=spanig,. ... g, Cla, b]. Then the following
Statements are ('quivalenf:

(a) {gy..n g,) is a QT-system.

(b)  For any weakly increasing intervals 1,, .., 1, D1, .., [,)50.
(€) 1&gy g} is a nondegeneracy weak Chebyshev system on [a, b]

(see [3]).

Before describing our result, let us note

LEMMA 7. Let r, ve Cla, b, {1} < X be weakly increasing and ¢ =1
or —1, fixed. Suppose

(—Die| vlr)” '=0, i=1,.. m
Then
(a)  There exist m intervals J,, ..., J,,. J, < - <J,,. such that
(—Yel| v]r” '20, i=1, .., m

Y,

Furthermore, if v(x)Z0 on any nontrivial interval r(x)Z0 on each I, |J;}"'
may be chosen s¢ that

Il

(—1yel| clr? '>0, .

g,
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(b) If m>1, there exist m—1 intervals K, .. K, _,, K, < --- <

K,, . such that

m

vir]? '=0, i=1,..,m—1.

VK,

In addition, if v(x)#0 on any nontrivial interval and r(x) £ 0 on each I,, then
K LK < - <K, may be chosen so that

( v |r|ﬂ']:0, i=1,...m—1,
YK,

and r(x)Z0 on each K..

The proof is similar to that of [2, Lemma 8.

LEmMA 8. Let G=span{g,, .., g, be an n-dimensional QT-subspace of
Cla, b1, {I;}] < X be weakly increasing. If ve G, re Cla, b] are such that
r(x)20 on each I, and j,, vlr)” '=0,i=1,..,n, then v =0,

Proof.  Suppose to the contrary that v#0 and the conditions of the
lemma hold. Take x, max{/, ,/I} |} <x<I;, and denote J,= ([, . x),
Jor=(x, I}, and J, =1, for i=1, ., n—1. We see that J, .., J, | are
also weakly increasing, r(x)#0 on each J,, and (—1)ef, vir|” '=0,
i=1,.,n+1, where e=1 or —1, fixed. By Theorem 3, {g,,.., g,} is a
nondegeneracy WT-system, hence v does not identically vanish on any
nontrivial interval. By Lemma 7, there exist {K;}7 < X, K, < --- <K, such
that r(x)#0 on each K, and [, v|r|” '=0, for i=1, .., n This implies
that ¢ has at least one sign change on each K,. Thus v has totally at least
n sign changes. This is impossible because of G being a WT-subspace,
which ends the proof.

CorOLLARY 1. Ler G=spanig,, ., g, be an n-dimensional QT-
subspace of C[a, b]. Let {I,}'*"' < X be weakly increasing and e =1 or —1,
fixed. Let re Cla, bl and {(x)YEQon each 1, i=1, .., n+ 1. If v€ G satisfies

(—ef elrnm 200 i=1 .0+l

Y1

then v = 0.

COROLLARY 2. Let G=spani{g,, .., g,} be an n-dimensional QT-
subspace of Cla, b]. Let {1} "< X be increasing and re Cl[a, b]\{0}.
Then there exists a nonzero polynomial ve G such that

(@) f,olrl” '=0, i=1,.,n—1
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(b) v changes sign one time on each I, i=1, ., 0 and has no sign

change in each (1,1, ), i=0. 1 .n— 1 where I) =a. I, =b.

Proof. Suppose r do not identically vanish on m intervals of {/,1" '

I <m<n—1. denoted by [J,}7, and the rest by {J,;7 ' . Notc the
following linear equations

”n N
I

Yoo g =0 i=1, .., m,
j 4,
. (10)

n

Y ’ g =0, i=m+ 1, .01

Since {g,, ... g,} i1s a QT-system, it follows by using the theory of linear
equations that (10) has a nonzero solution ¢, j=1,...n. Set e =%" | ¢ g,
It is easy to check that

a

el T=0, i=1,..,m,

s

(i)

| v=0, i=m+1, ..n-—1

Y,

Consequently, according to the above notation and the fact G is a
nondegeneracy WT-subspace, we conclude from (11) that v satisfies (a)
and (b).

LEMMA 9. Let 'G=spanl g, ... g, be an n-dimensional QT-subspaw ()/'
Cla, b], re Cla. h]. Let a system of extended intervals {17 = {1} } O | x,}
be increasing where {1/} < X and {x,} < (a.b). Suppose m<n. Then there
exists a nonzero polynomial ve G such that

(a) j, clrl” '=0,i=1, .., n.
b} v changes sign on each I, i=1,..,m. (If I,=x,. this meuans that
. i g i IS
v changes sign ar x,.)

Proof.  Put for 1 >0 sufficiently small

(b—(n—0t,h—(n—i—1)1), i=m+1, .. n—1litm<n—1
; (x, —6.x;+1) if 1elx,]
' U= tn=0ob—(n—i—1)t])
WUy, —tx, w1 i Lell)).

We see that {J;} is also increasing if 7>0 is sufficiently small. By
Corollary 2, there exists a nonzero polynomial ©,e€(G such that
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{, v, 1r]7 '=0, i=1...n—1 v, changes sign one timec on each J.
i=1,.,n—1, and has no sign change in each interval (J,',J ). i=0,
l,..,n—1, where J =a, J; =b. The polynomial v, can be assumed
normalized in the sense that ||v,|*=1. Letting 7 >0, we select a limit
polynomial ve G satisfying |, v [r|” '=0, i=1,...m, and for which v has
no sign change in cach interval (/' ,7,, ), i=0, 1, ..,m, where 1 =a.
[, =h. Itis not difficult to check that ¢ changes sign oneach /. i=1. ... m.
and has exactly m sign changes. This completes the proof.

We now state our main result.

THEOREM 4. Let G =span{g,. ... g, be an n-dimensional QT-subspace
of Cla,b], feCla.b1NG, ueG, r=f—u and S(I):=S,(1). Then the
Jollowing statements are equivalent.

(a) uis a best approximation to f from G.

(b)  There does not exist a ve G such that
SUV| virlr TS0, vieX,.
Y

(¢c)  The origin of n space lies in the convex hull of the set | S(I)I:
Te X, ) where I=({, g, 1r1” ‘oo §re,1r17 1)

(d) max, . S(I)f,v|r]” '>0 VredG.

(¢) max, y, S({,virl” '>0.VeeG\ {0},

H N.zn+l

Proof. Theorem 2 has shown that (a)=-(b), and (b)<(c)<(d) is
clear by means of well-known arguments. We now show the other
cquivalences. Denote N=N, and X7 =1{I,,., 1.} with [,<... <[,.
Clearly, r(x)#0 on each 1, i=1, .., N. Assume wihout loss of generality
that S(/,)>0.

(b)=>(f). Suppose on the contrary that N <n. Put

(, .15, if i=odd
Ko=<Us,17)) if i=evenandl* <[, (i=1,.,N=1)
1’ if i=evenand/; =1, ,.
Obviously the system of extended intervals {K,}Y ' is increasing. By
Lemma 9, there is a nonzero polynomial ve G such that [, v|r|” '=0,
i=1,..N—1, v changes sign on cach K, i=1, .., N— 1, and ¢ has exactly
N — 1 sign changes on [, b]. We assume that [, v[r|” '>0 (taking —v
instead of v if necessary). Denote K,=(a, K, ), Ky =(K{ . h).

640 62 1-X
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ASSERTION.
(e =00 xeRliso. (12)
I
AR, -~
(=) elr” '<0, veK,i<N. (13)

where K, = [K, .K'].

Proof. If K, = {x,|, clearly, the cquality in (12) and (13) holds. In the
following we assume K, is a nontrivial interval.

Case (i). 0<i<N. In this case it follows from f, v [r|” =0 that
[woelrl” "= =[5 ep” USince [, e lr]” >0 and ¢ has exactly one
sign change on K. we sec immediately that

(—1 el 0,
K _

xek.. (14)

i

~h
(=1 ="p elr]” <0,

Cuase (i1). i=0. Since v changes sign once in (K, , K" ). and that only
in (K, .K ), it follows from the assumption of |, ¢|r|” '>0 that
{% ¢ |r|” '>0, where x € K,

Case (i1). 7= N. Applying the second incquality of (14) to the case
i=N-—1, we get that
Ky

(DY el '<o. veRy . (15)

hRY

Next note that ¢ changes sign once in (K, ,,K.)), and that only in
(K. ,,K{ ) Hence from (15) it is easy to infer that

(—¥ 0 e 130, xeKy.
Jk"\

Now let /e X, be arbitrary. Then / must contain an odd number
of I's, say I>(f;u -l ), where j=1, j+2k< N, k=20. Thus
I5(K; v -~ UK, 5 ) Letting L=(I K, }and R=(K,, .1") we
have that

2k 1

‘~ vlr” 1:'~ clrl” T+ Z ’ vlrl” ‘+‘~ clrl” I
<1 Y1 (= UK YR

= el | e (16)
v

YR
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and

(=07 [ el <0

1.

(17)
(A])/»Z/\sl. Ule 120
R
because of (12) and (13).
On the other hand, by the definition of L and R, it follows that
L={ ,K' =], if j=even, (18)
R:(K/QZA‘[+)DI/+3/\ lf ]:Odd (]9)

Clearly, either (18) or (19) must occur. Then along with the condition that
r(x)#£0 on each [, i=1, ... N, we assert that r does not identically vanish
on at least one of L and R. Thus at least one of the strict inequalities in
(17) must hold. This combined with (16) and (17) gives that

~

(—1)-/+‘J vlr? >0,

7

Next by the assumption of S(/;)>0, we get that S(/)=S{(/)=
(— 1) SU)=(—1)*" and whence S(I)|,v|r]” '>0, contradicting
{b).

(f)=>(e). If not, let ve G [0} satisfy max, ., S(/)[,¢|r|” '<0. Then
max, . » SU) f,vlr]” '<O0 or S(I) [, vlrl”'<0, i=1,., N Since
SUYy=(=1)Y*ES(), (= 1)y SU) [, vlrl”~'20,i=1, .., N. Then because
of (x)Z0 oneach I, i=1,.., N, it follows from Corollary | that t =0, a
contradiction.

(e)=(d). It is trivial to verify.

(f) = (a). Suppose on the contrary that there exists a v€ G\ {0} such that
|r— el * < || *. Whence for [/},

SUN[ o)l TS [ i =N

Y, Ry

'

This implies that for each j, 1 < j< N. there exists a point x,, x; €/, such
that

SUNr—v)(x;) < SU,) r(x;), j=1,., N. (20)
From (20) it is easy to conclude that v+#0 has at least » sign changes,

which contradicts the fact that G is also a W T-subspace. This completes the
proof.
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We now provide an analogue of a fundamental result of de La Vallee
Poussin.

THEOREM 5. Let G=span’ g ... g} be an n-dimensionad QT-subspace
of Cla, b]. Let veG satisfy
(=WYe| (f=e)lf=cl” '20. i=l..n+l
v,

where (I e X, [ < o<, and e=1 or -1, fixed. Then

inf j/—ul*> min b=yl f o’ ‘{
e & Tsioops | ey !
The equality can occur if and only if v is a best approximation to | and
! 1
(11) CX! v

Proof. Letting ue (G be a best approximation to f. |f—u|*<
min, .., 1], (f—c)[f=rl" ‘| implies that

l‘ (f=u)|f—ul’ |< min ' (/- oytf—ol” 'L j=1.n+1.

e | Tei=nt 1 | vy, !
If for every, i, 1 <i<n+ 1, there exists a point x,, v; € /;, for which
(=Y elf—uly)<{—-1)Vel(f—1rH i=1, ... n+1,

then it is not difficult to sce that this is impossible by using the fact that
G is a WT-subspace. Therefore there must exist a /. je {1, ., n+ 1], such
that

(= D)elf—ulx)y=(=1)elf—r)x) forall ~xel

i

This combined with the fact again that (7 is a nondegeneracy WT-subspace
yields that r=w and of course, |/;} =X, .. Conversely, if ¢ is a best
approximation to fand {/,} < X, , then equality occurs.

5. UNIQUENESS
THEOREM 6. Let u be u best approximation from G to fe Cla, b]. If G
is a QT-subspace of Cla. b]. then u is unigue.

Proof. U f € G, then u= fis unique. Now suppose f ¢ (. If possible, let
reG be another best approximation. Then for X7, =![1Y =
[y <. <l . we have

(—1)e ' (f—uy|f—ul" '>0,
A"
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where ¢= - S, (/) and

i»/ (f—u)lf—ul” ‘}i I<i<N, }

i f—vl*=|f—ul*=min {

As in the proof of Theorem 5 we assert v =r.

LemMa 10, Ler G be un n-dimensional subspace of Cla, b]. Then there
exists a positive number C such that

ef*=C

el YreG. (21)

Proof. U v=0, (21} is trivial. Otherwise, set

el *

C=

T
re 10! i}l'}‘ ’,

we shall prove that C>0. Suppose (=0, then there exists a sequence
v € G {0} such that
o, |1

el

- .

This means that for w, =v,/[v.]|, we have lu, |, =1 and JJu, ||* -0,
k — . Suppose without loss of generality that u, —¢. Then ¢}, =1 and
by (3)

ell* = lim Ju, | * =0,
A

Ao s

a contradiction.

Remark. This conclusion still holds if we take G—f={v—/" veG}
instead of G.

With this conclusion we now present the strong uniqueness theorem.
THEOREM 7. Let G=spani{g,. .., g,} be a QT-subspace, ue G is u best

approximation 1o f. Then there exists a constant >0 depending only on [
such that for uny ve G

[f=vl* =] f—ull* 4+ =il
where 1 < g < p.

Proof. 1If feG. it is trivial. Thus we assume f ¢ G.
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For any v # u, set

R Vs

q
x

)

i — v

We shall prove that y(r) has a positive lower bound. If this is not the case,
then there exists a sequence ¢, € G, with ¢, #u, k=1, 2, ... such that

IRIPARTS e VL A

floe =, 4"

0, k— 2.

eg)

We first prove that ju—ro, | is a uniformly bounded sequence. In fact, if
Jlu—rv, Y = x. k— oo, it follows from |/ —¢, |9 = o and [/ —rv, | * 2

Clf=ui " =Clif—vi that

Clif—uv. " —1f—u|*
I/ i =17 I >

lim y(¢,)= lim o
K K Ju—v b

This contradiction proves that [lu— o, ;Y 1s bounded. Hence there is a
positive constant M, for which i|u—v | <M, k=1, 2, ... Without loss of
generality assume that ¢, converges uniformly to v, then it remains to
check that v satisfies Ju—vl|? <M, €, and (r}=0. Consequently
applying Theorem 6 we obtain v = 1.

Next set C=inf, ¢ .y, - omax, ., S, ()|, pwl|f—ul” . Clearly
C>0 from (e) of Theorem4. Set r=f—u, S(I}=_S8(1), and v, =u—x,.
where 2, € G and x, converges uniformly to O since ¢, converges uniformly
to v =u. Similar to the proof of Lemma 6, we can conclude that

lim Llr+o) [r+o” "M =Ll "H(x)
2(x) » 0 %(X)

=[pirt” "0

for any xe[a, b].
Hence from the fact |x, /|2, ], | <1 we have

lim Y¥(o,.)= lim

' o [ a) e+ 7 =g
w0 =04 o,

%y

ﬁpHV‘Jzo
(22)

by using Lebesgue convergence Theorem.
Taking any /e X, for which

i XAy ,
pSUY | ——1r7 =
A
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We calculate

SU) [ e+ ) r+ a0 " =SUY e

)= PAD
: I g ~ ¥7, ) ZX/\ v 1
= ol /[5(1) Pl )+ pSUI) | HK ]
~/H“Z/\' s _
= o |l IS Plag )+ CT.

By {22),

y(v)=lim y(v,)=

koo

C if g=1,
oL if l<g<p,

a contradiction. This complete the proof.
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