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In Ihis paper. we study a variation of hest I. r, approximation obtained by USll1g

a new ""norm." We consider the qucstions of existence and uniqueness and also
prove analogues of the essentials of the classical theory of hest uniform approxima

tion: characterization (Theorem 4). de La Vallee Poussin's hound (Theorem 5). and

strong uniqueness (Theorem 7). '19911 Acad'mIC 1'"". Inc

1. INTRODLCTlO'"

After Pinkus and Shisha [1 J proposed a new method of approximation
using LI'-type "norms" (gauges), Y-G. Shi [2J introduced another method
of approximation in the case [I = I. This method maintains many essentials
of the classical theory of best uniform approximation and has a distinct
advantage over the corresponding one for L I best approximation, in that
the unique best approximation is characterized by a remarkable geometric
property. In this paper, we propose another LI'-type measure I· Ii *
(I < [I < ex,) in terms of the technique of [2J in order to study the same
questions of existence, uniqueness and characterization. In the special case
p = I, the measure 11·11 * is the norm II ·11 defined in [2].

2. PRELlMI"iARIES

Let C[a, h J be the class of real-valued functions continuous on [a, h].
For I EO C[a, hJ and 1 < [I <x, we define

IIIII * = sup {I f' lilli' I dx I: a ~ (' ~ d ~ h}.
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Let G be an n-dimensional subspace of C[a, h]. We consider the following
problem: For a given f E C[a, h]. find a u E G such that

-ull*= inf IIf-1'II*
1- (,

Such a polynomial u (if any) is said to be a best approximation to f
from G.

Now we introduce the basic notations and definitions. Denote X:=
[/= (c, d): Ie [a, h]:. We adopt the convention that X contains the
unique "zero" element 0 = (c, c). If 1= (c, d) E X\ {O ], we write I = c and
I . = d. In the following, we always assume that f E C[a, h]. For ease of

notation we set f( I) := Lf IfF 1 dx, X r := {! EX: If(l)1 = Ilfl * ], and
S, (I) := sgn f(l). With these notations (1) can be rewritten as

* = sup If(l)l.
I c\

LEMMA 1. (a) X is a compact set, f(l) is a continuous fimction of I.

(b) IIfil* = max /d If(l)I·
(c) Ilfll*":; IlfIi::,,:;(h-a) II/il l

:.

The proof is easy and is omitted.
Let t: I" E C[a, h]. m = 1, 2, ... , and let f;" converge to t: uniformly on

[a, h]. From (c) of Lemma 1 it easily follows that

lim II,,- fll * = o.
11/ --+ I

(2)

LEMMA 2. If I E C[ a, h]. and C is a real numher, then

(a) Ilfli*=O if and only ifI(x) = Ofclr all XE [a, h],

(b) CIII*=ICT'llfll*,
(c) I· * docs not satis(1' the triangle inequality.

Prout: (a) and (b) are clear from the definition of *
(c) Let f>O, g>O. By the definition Ilfll*=J:;p'dx, Ilgll*=

J7, gl'dx and Ilf + gil * = J:; U + g)l' dx. Since F + gl> < U + g )1', this yields

* + Ilgll* < Ilf+ gll*·

LEMMA 3. If I E XI and t > 0 is slItficiently small, then

(a) I ,1+EZ(f)u{a,h:, where Z(f)= {xE[a,hJ:f(x)==OI,

(b) f(! + t) f(! - t) ,,:; 0, f(! + - t) f(! + + t) ,,:; o.
(c) S/(l)f(! +t)~O, Sr(!)I(! + -t)~0.

For thc proof of (a) see [2, Lemma 1], and the rest is similar, too.
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LEM\lA 4. Ass1/lI1e that I I", E CLa, hl 111 = L 2, ... a/ld I" tends to f
I/lIiliJrlnh Oil [a, h]. Then

* = lim I", *. (3 )

Proof: At first, according to the Lebesgue Dominated Convergence
Theorem, it follows that

lim /111(1) = /(1),

Next. it is easy to check that

max 1/111(1)1 - max 1/(/)1 ~ max [I/;,,(/)I -1/(1)1],
I'C .\ I E~ .\ [(' y

(4)

Consequently from the property of the lim. the hypothesis of I;" -+ / and
(4), we obtain that

lim [maxiI,,(I)i-maxi/(/)IJ~ lim maxLI/;,,(/)I-i/(I)IJ=O. (5)
I, ,\ ,\ III )- l I ,\

Similary from

max 1/;,,(/)1- max If(l)1 ~ min [1/;,,(1)1-1/(1)1 J,
/ ..\- 1\:.\' /t-.;,"

it follows that

lim [max jI,,(/)I-max I/(I)IJ ~ lim min [I/;,,(I)I-I/(I)IJ =0. (6)
/,-\ IE .\ Ie.\'

Combining (5) and (6) gives the result.

3. EXISTE'JCE

THEOREM I. Lei I E ('[a, h]. There e\i.\/s a II E G = span (gl' ... , g,,: Ii)/"
\1'hich

inf U--I'il*= 1/,1*·
r!- (;

Proof. Set inf" (, ill - I'll * = C. We may assume that C> O. For 111 = I,
2, ... , let 1/ 111 = I:Z I a~"Jgk 'iO satisfy Iim lll ./ III- lIlIIll * = C and let /1111 =
max [la~lIIll: I ~ k ~ II) > O. We first show that /1111 is a bounded sequence. If
this is not the case, then there exists a subsequence, again denoted by Il""
which tends to>_. By choosing a suitable subsequence, denoted by {/1m,:,
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we may assume that, for i = I, 2, ... , JI,", = la~,~"I!, with a fixed ko, and that.
for k = L ... , 11, a~"II/jlll, converges, say, to (/k' la k I~ Land la k,,! = 1. Set
1'= I~'~ I ak gk and 1'111 = Jill, \(-u lI ,). 111= I, 2, .... Then VII', tends uniformly
to -1' on [a,hl Since 1'#0.111'11*>0. By (3), we have lim,., 1'1", *=
lid * > O. However.

lim 111'11I,11*= lim Ii JlIII,J (f-III11 ,lII* = lim JlII/iII-III1I,II*==O.

This contradiction proves that jllIl is bounded.
Hence there are integers 1~1111<111:,< ... and rcals a\, a:,,, .. , (/11 for

which lim,~ f. a~"11 = ak , k = I, ... , 11. Thus lim,. I lilli, = II = I~ \ak gl,

uniformly on [a, hl By (3)

11/-11:1*= lim 1/-III11 .II*=C.
1--.... /

The definition of C implies that

inf 11/-1'II*=II/-u!I*.
I" ~ (,

4. CHARACTERIZA T10:"

DEFINITIOJ\; I. Let f # O. An / E X/ is said to be a definite interval of f
if there is no J c / satisfying fV) = --/(1). The set of all definite intervals
off is denoted by Xr,

An IE Xr is said to be a maximal (resp. minimal) definite interval of /
if there is no J::::J / (resp. J c!) satisfying J E Xr and J # I. The set of all
maximal (resp. minimal) definite intervals of / is denoted by X i\l (resp.
X7')·

DEFINITION 2. (/1' ... , /11I: c X\ [O) is said to be weakly increasing if

(a) I j <1"1,1,' <1/'I,i=L ... ,m--1.

(b) 1,+ < I, + :" i = L ... , 111 - 2.

If I and J arc nonempty subintervals of [a, h]. 1< J := x < r for all .\. E I
and Y E 1. .

(II, ... ,III'}cX\{O} is said to be increasing if 11 < .,. <III,'
A system of extended intervals II, , III" i.e., (E X or I, = :x:'

x E [a, h]. is said to be increasing if II < < 1
11I

,

LEMMA 5. (a) X/, X/\!, alld X7' must exist.

(b) X;\1 is fi"nite. Mealllrhile X ;\1 = ; I, ;1\ \rith II ~ '" ~ /.\ 1\

l1eak h' increasing and satisfi"es /(1, , I ) =- /( /j)' i = I, ... , N -- I.
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(c) X/' islinire. MellIHrhilc X/'=:.I,:~ \\'irh J[ < ... <J\ IS

increllsing lind .Illrisfies /(.1, I I) = - ((.Ii)' i = I, ... , N - I.

(d) Card X)' = Card X;", denored hr N I . Furrhermore if X 1\1 =
[11, ... , 1.,.: lind X;" =[ J [ , ... , J v,: lire \\eak II' increasing, rhen J. eli'

/(1i\.I i )=0, i= L .. ., N I , (ind J i = (/i' [, I. t [J, i=2. .... N I I.

The proof is similar to that of [2, Lemmas 4 7 and Theorems 2 4]

LEMMA 6. Ler 1', l' E C[a. hJ (ind I E X. Then

. (r+ix)(1)-r(f) ,
lIm . =p!ljrll' [
/ • \) I. . I

Proo( By definition,

. (r+iY)(/)-r(/) . ~(r+il')lr+i.l'II· [ rirll' I
lIm . = lIm I . (7)
/, . --+ () It / ()~, I I~

Set rPU) = (r + i.l') II' + i.IY [ Clearly rP( i. ) is a continuous function of i.

and

d( r + i.I')I'
--.--=pl'(r+i.r)/' I

dl.

cP'(i.)= 0,

d( -I' - AI')I'
r =pr( 1'--1.1'1 1

' I
( I.

I' + II" > 0,

I' + i.l' = 0,

I' + i.1' < O.

Hence, there exists ~. I~I < li.l, satisfying

I

cP())-cP(O)!
i. =lcP'(~)I=p1'lr+~I'II' l-'S;pll'I[lrl+ll'IY I

for li.I-'S;1. This implies that [cP(i)-cP(O)];i. is dominatcd by
P 11'1 [Irl + II'IY I. Thus according to thc Lebesguc Dominated
Convergence Theorem. we obtain that

.' (r+i.1') Ir+hl l' I_ r I'Y I

lIm I .
;. () " J.

, . (r+i.I')lr+i,1'II' I-rlrll' I

= I lIm -----------
~ I;. • () I.

= r cP'(O)= r p1' Irl" I
" "

This combincd with (7) completes the proof.
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THEOREM 2. Let G = span [ g I' ... , g,,} he an n-dimensional suhspace of
C[a,h], fEC[a,h]\\G, UEG, r=f-u, S(I):=S,(I). Then a necessary
condition pir u to he a hest approximation to ffrom G is that there do not
exist rEG such that

,

S(/) I 1'11'11' 1 >0,
v /

V/ E X r . (8 )

Proof Suppose to the contrary that there is arE G satisfying (8). At
first for each / E ,.r" it follows from Lemma 6 that

lim S(I)(r+h')(~)-S(l)r(/)=pS(1) r 1'11'1/' 1>0.
;. () I. ,/

Therefore [S(I)(r + i1')(/) - S(I) r(1)J/I. is a continuous function of ) and
/ and hence there exist sufficiently small positive numbers i/ and 1;/ such
that

[S( /)( I' + h)( /) - S( /) 1'( /) J; I. > 0

and

S, ,,(1)=S, ".(I)=S(I)

for all 0<)<1./ and 1E1(/,!:/)=[1EX: 11 -I 1+11+-/+1~1:/}

Thus we have

1(I' - 1.1')(1)1 < S(I) r(1) ~ 5(1) r(l) = Ilrl! *,

On the other hand, for each If-X" clearly 11'(1)1 < 111'11* By the
continuity of (r-h)(I), there also exist sufficiently small positive numbers
1./ and 1;/, for which (91 does hold.

Secondly, it is clear that the compact set X is covered by an open
covering U/cx A (1, 1;/). Hence we can collect a finite number of elements
from the covering, denoted by [,1(1j, 1;/)] ~' for which

A

U A(1" I/)::::J X
, 1

In other words, for each / E X, there exists a j, I ~ j ~ k, such that
/",A(// 1:/). Set ;=min[J.,I, .... I.I;). Clearly O<;~i". From (9) we see
immediately that, for all O<)~;, I(r-h)(/)I < Ilrll*. This implies that,
for all 0 < ). ~;, we have

III' - hll * < Ilrll *.

This contradicts the hypothesis that u is a best approximation to f
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In the following, we shall be concerned with particular n-dimensional
subspaces of C[a, hJ, called QT-subspaces, considered by Y.-G. Shi [2J,
for which we can obtain a complete characterization of best approximation.

DEFINITION 3. A system of functions : g I' ... , gil: c C[a, hJ is said to

be a quasi-Chebyshev system on [a, hJ (or a QT-system) and an
n-dimensional subspace G=span{gl' ... , gil: a QT-subspace if

whenever : I,} 'i c X is increasing.
The following equivalent properties of a QT-system are from

[2, Theorem 6].

THEOREM 3. Let G = span {g I' ... , gil: c C[ a, h]. Then the fii/lowing
statements arc equivalent:

(a) (gl' ..., gIl) is a QT-s\'stem.

(b) For any weakly increasing intervals I}, ... , I", D( 11' ... , I,,) =I- O.

(c) : g I' ... , g,,} is a nondegeneracy il'eak Chehysher system on [a, h J
(see [3 J).

Before describing our result, let us note

LEMMA 7. Let r, v E C[a, h J, :I,: 'i' c X he weakly increasing and e = 1
or - 1, fixed. Suppose

Then

( - Ire I l' I rl!' I ~ 0,.[,

i= 1, ... ,m.

(a) There exisl In inlenals 1 1 , ... , 1 m , 1 1 < .. < 1 m , such Ihal

(-I)'ell'lrl!' I~O,
'J,

i=I, ...,m.

Furthermore, it' I'(x) t:. 0 on any nontril'ial in terra/ r(x) t:. 0 on each I" :J,: 'i'
may he chosen su thai

( - 1)' err Ily I > 0,
'J,

i= I, ... , m.
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(b) If m> I, there exist m-I intervals K 1, ... , Kill ), K) < ... <
K,,, J, such that

r t'lrll' '= 0,
• K,

i=I, ... ,m-\.

In addition, if v(x) oj. °on any nontrivial interval and r(x) oj. °on each I" then
: K, }';' I, K , < ... < K,,, 1 may he chosen so that

r r 11'11' 1 = 0,
"'Ki

i=l, ...,m-I,

and r(x) oj.°on each K,.

The proof is similar to that of [2, Lemma 8].

LEMMA 8. Let G = span {g I' ... , g,,} he an n-dimensional QT-suhspace of
C[ a, h], {Ii} '; C X he weakly increasing. If v E G, I' E C[ a, h] are such that
r(x) oj.°on each Ii, and ft, v 11'11' 1=0, i= 1, ..., n, then v=o.

Proof Suppose to the contrary that v # °and the conditions of the
lemma hold. Take x, max{I" ,I,~ ,}<x<I,;, and denote J"=(I,, ,x),
J,,+,=(x,I,~), and Ji=Ii, for i=l, ...,n-I. We see that J1, ...,J"+1 are
also weakly increasing, r(x) oj. 0 on each J i , and (- I)' l' SJ, v 11'11' 1 ~ 0,
i=I, ... ,n+l, where 1'=1 or -I, fixed. By Theorem 3, {g), ... ,g,J is a
nondegeneracy WT-system, hence v does not identically vanish on any
nontrivial interval. By Lemma 7, there exist {K i }7 c X, K , < ... < K,,, such
that r(x) oj.°on each Ki and SK, v II'I p 1 = 0, for i = I, ..., n. This implies
that r has at least one sign change on each K,. Thus v has totally at least
n sign changes. This is impossible because of G being a WT-subspace,
which ends the proof.

COROLLARY \. Let G = span{ g" ... , gIl ] he an n-dimensional QT
suhspace of C[a, b]. Let {Ii} '; + 1 C X be weakly increasing and e = I or - I,

fixed. Let r E C[a, b] and r(x) oj.°on each Ii, i = I, ... , n + 1. If v E G satisfies

then l' = 0.

( - I Vl' r r II' II' 1 ~ 0,
"'Ii

i= 1, ... , n + 1,

COROLLARY 2. Let G = span {g), ..., g,,} he an n-dimensional QT
suhspace of C[a, b]. Let {IY; ) c X he increasing and I' E C[a, hJ\ {O}.
Then there exists a nonzero pol}'nomial v E G such that

i = I, ... , n - 1.
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(b) r changes sign one time on each I" i = I, ... , n and has /10 sign
changeineach(/,',I,.!),i=O, l, ... ,n-I,wherel ll' =0,11/ =h.

Proof Suppose r do not identically vanish on m intcrvals of : I,: '; "
I -'S; IJJ:( n - I. denoted by [1,: ';', and the rest by :1,: ;;, I II' Notc the
following linear equations

I CI r gj I ri I' I = O.
,I 1 L.!,'

i = I, ... , m,

i = m + L ..., n -- 1.

( 10)

Since {gl' ... , gl/} is a QT-system, it follows by using the theory of linear
equations that (10) has a nonzero solution (",. j = 1, ... , n. Set 1'=2::;' I c

i
gl"

It is easy to check that

I r Irl l
' 1 = o.

'.I,

1,=0.
"'/,

i = I, ... , Ill,

i = m + I, ... , n -- I.

(II)

Consequently, according to the above notation and the fact G is a
nondegeneracy WT-subspace, we conclude from (II) that v satisfies (a)
and (b).

LEMMA 9. Let °G = span: gl' ... , gil} he an n-dimensional QT-suhspace of
C[a, h], r E C[a, h]. Let a system o(extended intervals: (: ';' = {If} u [xk :
he increosing \rhere {I;: c X and: Xk } c (a, h). Suppose m < n. Then there
exists a nonzero polynomial v E G such that

(a) L, r Irl l ' 1=0, i= I, ... , Ill.

(b) r challges sign on each I" i= 1, .. , IJJ. (If I, =Xk' this means thot
v changes sign at Xk')

Proof Put for t > 0 sufficiently small

I = m + I, .... n - I If m < n - I

We see that :1,: IS also increasing if r > ° is sufficiently smalL By
Corollary 2, there exists a nonzero polynomial v, E G such that
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L, 1'1 II-j!' 1=0, i = 1, ... , n- 1, 1'1 changes sign one time on each i,.
~. = I, ... , n - 1, and has no sign change in each interval (i,' , i, + I)' i = 0,
1, ... , n - I, where i (t = a, J n = b. The polynomial v I can be assumed
normalized in the sense that II v I II * = I. Letting t ~ 0, we select a limit
polynomial v E G satisfying JI, V 11'1 1' 1=0, i = I, ... , m, and for which v has
no sign change in each interval (/,1 , I, + ,), i = 0, I, ... , m, where lit = a,
In = h. It is not difficult to check that /, changes sign on each Ij, i == 1...., /11.

and has exactly m sign changes. This completes the proof.

We now state our main result.

THEOREM 4. Let G = span [g, ' ... , gn l be an n-dimensional QT-suhspace
of C[a, h], f E C[a, h ]\G, u E G, I' = f - u and 5(1):= 5,(1). Then the
jiJlI01rillg state/l1ents arc equil'alellt.

Ia) II is a hest approximation to fFo/l1 G.

(b) There does not exist a l' E G such that

5(1) I 1'11'11' '>0,
< I

VI E XI'

(c) The origin of n space lies in the convex hull of the set [S(l)i:
IEX,;,ll'herei=(Lgllrjl' I, ... , Lg"lr!1' I).

(d) maxIE\,S(I)L1'lrlll I~O,V1'EG.

(e) max/cl,S(I)fl1'lrlll '>O,V1'EG\{O}.

(f) N,~Il+1.

Proof: Theorem 2 has shown that (a)==>(b), and (b)¢>(c)¢>(d) is
clear by means of well-known arguments. We now show the other
equivalences. Denote N = N I and X~" = {I, , ... , Iv} with II < ... < Ix.
Clearly, r(x):;i:°on each I" i = 1, ... , N. Assume wihout loss of generality
that S(II) > 0.

(b) ==> (fl. Suppose on the contrary that N ~ II. Put

{

(II ,1,'+,)

K = (I, + 1--)
I I ' 1+ 1

1+,

if i = odd

if i = even and 1,+ < I, + ,

if i = even and I,' = I I + I'

(i= I, ... , lV-I).

Obviously the system of extended intervals {K j : 1\ I is increasing. By
Lemma 9, there is a nonzero polynomial l' E G such that Ji-., v II'll' I = 0,
i = 1..... N - 1, l' changes sign on each K" i = 1, ..., N - 1, and l' has exactly
N - 1 sign changes on [a, h]. We assume that L, l' 11'1 1' '> 0 (taking -I'

instead of v if necessary). Denote K o = (a, K, ), K \ = (K < I' b).
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(-1)"1 j' rlrl l ' 1)00,
'/..

./..

(-])',11 rlrl/'I~O,
".\

XE K" i> O.

XEK"i<N.

( 12)

(13 )

where K, = [K, ,K,'].

Proot: If K,= :x k :' clearly, the equality in (12) and (13) holds. In the
following we assume K, is a nontrivial interval.

Case (i). 0 < i < N. In this ease it follows from J/.., l' irl l ' I = 0 that
J~, rlrl P

1 = - J~' l'lrl l
' I Since L, l' Irl l

' I >0 and l' has exactly one
sign change on K1 , we see immediately that

( - 1)' I I I" l' I r II' 1)0 0,
'/..,

( - I )' - I I' /..,' l' I rill I ~ 0,
".\

XEK,. (14 )

Case (ii). i = 0, Since l' changes sign once in (K () , K I' ), and that only
in (K 1 ,K II), it follows from the assumption of L, l' Irlpi> 0 that
J~ot I'lrl P I )0O, where xEK().

Case (iii). i = N. Applying the second ineq uality of (14) to the case
i = N - L we get that

(0 r..: .~. 1

( - 1)\ I . rlrl l ' I ~ 0,
0, XEK.\ I' (15 )

Next note that l' changes sign once in (K \ I' K ,~'), and that only in
(K S I' K.~ I)' Hence from (15) it is easy to infer that

(_I)S + I i' l' Irl p 1)0 0,
"' K ,\

Now let ! E X, be arbitrary. Then ! must contain an odd number
of I/s, say !:::J(lju ... U!j+2k), where j)ol, j+2k~No k;?O. Thus
I:::J (KI U ... U K j + 2k 1)' Letting L = (I ,K I' I) and R = (K j' 2k' Ii), we
have that

f I

i + 2k

r l' Irl p 1= r l' Irl p I + I
• I 0/

I , •

I l' Ir! p I + I l' I'Y I
• 1\"( • N.

-Iulrl/' 1+1 rlrl l ' I
-'I '/I

(16)
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(-I)i r [c II'I I' 1~0
. /

( 17)

(-1)1' OJ 1 I r 11'11' t~o

-I'

because of (12) and (13).
On the other hand. by the definition of Land R, it follows that

L = (I • K
I
+- 1) => II

R = (K I , 2k' I + ) => II + U

if j= even,

if j= odd.

( 18)

( 19)

Clearly, either ( 18) or ( 19) must occur. Then along with the condition that
r(x) to on each f i • i= 1, .... N, we assert that I' does not identically vanish
on at least one of Land R. Thus at least one of the strict inequalities in
(17) must hold. This combined with (16) and (17) gives that

( - 1 )J + 1f v 1 I'll' 1 > O.
I

Next by the assumption of S(11) > o. we get that S(1) ,= S(1/) =

(-I )" 1S(I1) = (-I )i" 1 and whence S(1) L t' 11'11' 1> O. contradicting
(b).

(f)=>(e). If not, let VE'G\[O) satisfy max/Ex,S(I)Lvlrll' 1~;0. Then
max/,,\,~,S(f)Lvlrll' 1~0 or S(fi)Li[)lrll'-I~O. i=I, ... ,N. Since
S(fi) = (-I y+ I S(fd. (-1 r S(fd L.tc 11'11'- 1 ~ 0, i = I, .... N. Then because

of r(x) to on each Ii. i = I ..... N. it follows from Corollary I thalt r = 0, a
contradiction.

(e) => (d). It is trivial to verify.
(f) => (a). Suppose on the contrary that there exists arE' G {O) such that

Ilr-rl:*~ 111'11*· Whence for :Ii)~'

S(1/)! (r-l')lr-vl l ' 1 <S(1,)1 1'11'1 1' 1
~. I, ~ II

j= I ...., N.

This implies that for each j, 1~ j ~ N. there exists a point xJ' xJ E, f
l

, such
that

j= I ..... N. (20)

From (20) it is easy to conclude that [) # 0 has at least n sign changes,
which contradicts the fact that G is also a If'T-subspace. This completes the
proof.



106 MIMi FAN(;

We now provide an analogue of a fundamental result of de La Vallee
Poussin.

THEOREM 5. Let G = span: gl' .... g,,: he 0/1 Il-dinzellsiollo/ QT-suhspoce
of C[ a. h]. Let l' E G satil!.l·

Il'el (1-1')1/--11 /' I?O.
'I,

i=L .... /1+I.

i= 1..... /1+ 1.

where: I,: 'i ' I e .~'. II < ... < I" + I olld e = 1 or L fixed. lJzell

inf -ull*? min II' (I-rll/-1'II' Ii
!I( (, I ! !I' J :-'1, t

The equality call occllr if a/1d oll/Y if 1 is 0 hest appro.yi/1/atio/1 to / alld
:I j ] eXt ,.

Proot: Letting liE G be a best approximation to r 1/ -- 1111 * 0:;

mini , n I I IL, (I - r) 1/ -- 1'1" II implies that

r (1-11)11-111" 10:; min Ir u 1')1/ /'1" II·
"'f, I I !I t 1 "1,

If for every. i. 1 0:; i 0:; II + 1, there exists a point X,,\, E I,. for which

(-1)' d/- u)(x/) < (--I)' e(f-1'Hx j ). i=I ..... II+L

then it is not difficult to see that this is impossible by using the fact that
G is a WT-subspace. Therefore there must exist a j. j E : 1..... 11 + I :. such
that

(-I)' e(l-II)(x) = (-1)' e(l-r)(\) for all x E I;.

This combined with the fact again that G is a nondegeneracy WT-subspace
yields that l' = II and of course. i/,) e X, ,. Conversely. if /' is a best
approximation to f and {I,: eX/ ,then equality occurs.

S. UNIQUENESS

THEOREM 6. Let u he a hest approximatio/1 !rom G to f E C[a. h]. If G
is a QT-suhspace of C[a. h]. the/1 II is unique.

Proof: Iff E G. then u = f is unique. Now suppose f ~ G. If possible. let
rEG be another best approximation. Then for .r '/' u = : Ii J~!'.
11 < ... < I y , ,,' we have

(-I )' e I (I -- II) If - 111/' I> O.
'I
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where e = - S'/ ,,(11) and

As in the proof of Theorem 5 we assert U = 1'.
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LE\1MA 10. Let G he (III n-dimensional suhspace of C[a, h]. Then there
exists a positil'e numher C such that

l' *~ C 1
'
1'1 /'" "It- EO G. (21 )

Prool If l'=O, (21) is trivial. Otherwise, set

111 *
C= inf --,'

/. f-C (; : (): r '{

we shall prove that C> O. Suppose C = 0, then there exists a sequence
I'k E G {O) such that

Ill'd*----->0,
l' k II I',

k--> x-.

This means that for U,=I', Ill'kll, we have Ilukl, =1 and Ilu,II*-->O,
k --> x. Suppose without loss of generality that Uk --> l'. Then Ill' ,= I and
by (3)

111'11*= lim Uk *=0,
k--+ I

a contradiction.

Remark. This conclusion still holds if we take G - I = [I' - r I' E G J

instead of G.

With this conclusion we now present the strong uniqueness theorem.

THEOREM 7. Let G = span {g I' ... , g,,) he a QT-suhspace, u EGis a hest
approximation to f Then there exists a constant ;' > 0 depending olllr on I
such that .If)r any I' E G

where 1 ,e;; q ,e;; p.

Proot: Iff E G, it is trivial. Thus we assume I rei G.
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For any I' # /I, set

MING FANG

11/- 1'1 * - 1 - /III *
:'(1')= I 11'/, /1- 1 ,

We shall prove that }'( v) has a positive lower bound, If this is not the case,
then there exists a sequence 1', E G, with 1', # /I. k = 1. 2, .." such that

I't' I' II * II t' /I 'I *i'(I',)= I, -, -, - --+0,

11/1- 1', II,

We first prove that /I - I'/, 11'1, is a uniformly bounded sequence. In fact, if
I/I-I:,II'~ --+X. k--+-:o, it follows from 11/-1:1.11'1, --+Y_ and -I',I'*~

C 11/- l', ,II; ~ C liI-vkll'l, that

This contradiction proves that 11/1- v/, 'I, is bounded. Hence there is a
positive constant M, for which /I -- 1" '~ :( M, k = 1, 2, .... Without loss of
generality assume that l'/, converges uniformly to I" then it remains to
check that I' satisfies 11/1- l' 11'1, :( M, l' E G, and i'( 1:) = O. Consequently
applying Theorem 6 we obtain l' = /I.

Next set C=inf"c(LI."II"max/c,! ,SI ,,(!)Jrplrl/-/l11' I. Clearly
C>O from (e) of Theorem 4. Set 1'=/-/1, S,(I)=S(I), and 1',=1I-y'/"
where y., E G and x, converges uniformly to 0 since l', converges uniformly
to v = /I. Similar to the proof of Lemma 6, we can conclude that

lim
Y.t,(x) > ()

[( I' +xd II' + Y., II' I ] ( X ) - [I' II'll! 1 ] ( X )

xdx)

for any XEO [a, hJ
Hence from the fact Ix,/llx, II, 1:( 1 we have

IJ =0

(22)

by using Lebesgue convergence Theorem
Taking any J EO X r for which

. x
pSt!) I --'-Irl l

! I ~ C
'I Ilx, II , '
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We calculate

='1, III, '/ IS( I) 'P('1! ) + pS(f) r __'1_,- Iri /' Il.L '/11'1 /-11, j

By (22),
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if q= I,

if 1 < q ~ p,

a contradiction. This complete the proof.
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